Coil-to-helix transitions in intrinsically disordered methyl CpG binding protein 2 and its isolated domains.

Protein Sci

Department of Biochemistry and Molecular Biology, Campus Delivery 1870, Colorado State University, Fort Collins, Colorado 80523, USA.

Published: April 2012

Methyl CpG binding protein 2 (MeCP2) is a canonical intrinsically disordered protein (IDP), that is, it lacks stable secondary structure throughout its entire polypeptide chain. Because IDPs often have the propensity to become locally ordered, we tested whether full-length MeCP2 and its constituent domains would gain secondary structure in 2,2,2-trifluoroethanol (TFE), a cosolvent that stabilizes intramolecular hydrogen bonding in proteins. The α-helix, β-strand/turn, and unstructured content were determined as a function of TFE concentration by deconvolution of circular dichroism data. Results indicate that approximately two-thirds of the unstructured residues present in full-length MeCP2 were converted to α-helix in 70% TFE without a change in β-strand/turn. Thus, much of the MeCP2 polypeptide chain undergoes coil-to-helix transitions under conditions that favor intrachain hydrogen bond formation. The unstructured residues of the N-terminal (NTD) and C-terminal (CTD) domains were partially converted to α-helix in 70% TFE. In contrast, the central transcription regulation domain (TRD) became almost completely α-helical in 70% TFE. Unlike the NTD, CTD, and TRD, the unstructured content of the methyl DNA binding domain and the intervening domain did not change with increasing TFE concentration. These results indicate that the coil-to-helix transitions that occur in full-length MeCP2 are localized to the NTD, CTD, and TRD, with the TRD showing the greatest tendency for helix formation. The potential relationships between intrinsic disorder, coil-to-helix transitions, and MeCP2 structure and function are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3375753PMC
http://dx.doi.org/10.1002/pro.2037DOI Listing

Publication Analysis

Top Keywords

coil-to-helix transitions
16
full-length mecp2
12
70% tfe
12
intrinsically disordered
8
methyl cpg
8
cpg binding
8
binding protein
8
secondary structure
8
polypeptide chain
8
unstructured content
8

Similar Publications

Kinetic Implications of IP Anion Binding on the Molecular Switch of the HIV-1 Capsid Assembly.

bioRxiv

December 2024

Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, United States of America.

HIV-1 capsid proteins (CA) self-assemble into a fullerene-shaped capsid, enabling cellular transport and nuclear entry of the viral genome. A structural switch comprising the Thr-Val-Gly-Gly (TVGG) motif either assumes a disordered coil or a 3 helix conformation to regulate hexamer or pentamer assembly, respectively. The cellular polyanion inositol hexakisphosphate (IP6) binds to a positively charged pore of CA capsomers rich in arginine and lysine residues mediated by electrostatic interactions.

View Article and Find Full Text PDF

DNA binding reveals hidden interdomain allostery of a MazE antitoxin from Mycobacterium tuberculosis.

Biochem Biophys Res Commun

May 2024

Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon-si, 11160, Gyeonggi-Do, Republic of Korea. Electronic address:

Type II toxin-antitoxin (TA) systems are ubiquitously distributed genetic elements in prokaryotes and are crucial for cell maintenance and survival under environmental stresses. The antitoxin is a modular protein consisting of the disordered C-terminal region that physically contacts and neutralizes the cognate toxin and the well-folded N-terminal DNA binding domain responsible for autorepression of TA transcription. However, how the two functional domains communicate is largely unknown.

View Article and Find Full Text PDF

It is well established that solutions of both polymeric and oligomeric κ-carrageenan exhibit a clear change in optical rotation (OR), in concert with gel-formation for polymeric samples, as the solution is cooled in the presence of certain ions. The canonical interpretation - that this OR change reflects a 'coil-to-helix transition' in single chains - has seemed unambiguous; the solution- or 'disordered'-state structure has ubiquitously been assumed to be a 'random coil', and the helical nature of carrageenan in the solid-state was settled in the 1970s. However, recent work has found that κ-carrageenan contains substantial helical secondary structure elements in the disordered-state, raising doubts over the validity of this interpretation.

View Article and Find Full Text PDF

Manipulation of pH responsiveness is a frequently employed tactic in the formulation of trigger-responsive nanomaterials. It offers an avenue for "smart" designs capitalizing on distinctive pH gradients across diverse tissues and intracellular compartments. However, an overwhelming majority of documented functional groups (>80%) exhibit responsiveness solely to the heightened acidic of intracellular pH (about 4.

View Article and Find Full Text PDF

This study focused on GSK-3β, a critical serine/threonine kinase with diverse cellular functions. However, there is limited understanding of the impact of non-synonymous single nucleotide polymorphisms (nsSNPs) on its structure and function. Through an exhaustive in-silico investigation 12 harmful nsSNPs were predicted from a pool of 172 acquired from the NCBI dbSNP database using 12 established tools that detects deleterious SNPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!