In mammals, the Voltage-dependent anion channels (VDACs) are predominant proteins of the outer mitochondrial membrane (OMM) where they contribute to the exchange of small metabolites essential for respiration. They were shown to be as well associated with the plasma membrane (PM) and act as redox enzyme or are involved in ATP release for example. In Arabidopsis, we show that four out of six genomic sequences encode AtVDAC proteins. All four AtVDACs are ubiquitously expressed in the plant but each of them displays a specific expression pattern in root cell types. Using two complementary approaches, we demonstrate conclusively that the four expressed AtVDACs are targeted to both mitochondria and plasma membrane but in differential abundance, AtVDAC3 being the most abundant in PM, and conversely, AtVDAC4 almost exclusively associated with mitochondria. These are the first plant proteins to be shown to reside in both these two membranes. To investigate a putative function of AtVDACs, we analyzed T-DNA insertion lines in each of the corresponding genes. Knock-out mutants for AtVDAC1, AtVDAC2 and AtVDAC4 present slow growth, reduced fertility and yellow spots in leaves when atvdac3 does not show any visible difference compared to wildtype plants. Analyses of atvdac1 and atvdac4 reveal that yellow areas correspond to necrosis and the mitochondria are swollen in these two mutants. All these results suggest that, in spite of a localization in plasma membrane for three of them, AtVDAC1, AtVDAC2 and AtVDAC4 have a main function in mitochondria.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11103-012-9874-5DOI Listing

Publication Analysis

Top Keywords

plasma membrane
12
atvdac1 atvdac2
8
atvdac2 atvdac4
8
mitochondria
5
voltage-dependent-anion-channels vdacs
4
vdacs arabidopsis
4
arabidopsis dual
4
dual localization
4
localization cell
4
cell distinct
4

Similar Publications

Cellular Cholesterol Loss Impairs Synaptic Vesicle Mobility via the CAMK2/Synapsin-1 Signaling Pathway.

Front Biosci (Landmark Ed)

January 2025

Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.

Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.

View Article and Find Full Text PDF

Heterogeneity in Fluorescence-Stained Sperm Membrane Patterns and Their Dynamic Changes Towards Fertilization in Mice.

Front Biosci (Landmark Ed)

January 2025

Graduate School of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 400-8510 Kofu, Japan.

Background: Sperm represent a heterogeneous population crucial for male reproductive success. Additionally, sperm undergo dynamic changes during maturation and capacitation. Despite these well-established processes, the complex nature of sperm heterogeneity and membrane dynamics remains elusive.

View Article and Find Full Text PDF

Background: Dexamethasone has proven life-saving in severe acute respiratory syndrome (SARS) and COVID-19 cases. However, its systemic administration is accompanied by serious side effects. Inhalation delivery of dexamethasone (Dex) faces challenges such as low lung deposition, brief residence in the respiratory tract, and the pulmonary mucus barrier, limiting its clinical use.

View Article and Find Full Text PDF

Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).

View Article and Find Full Text PDF

Mitochondria as a Therapeutic Target: Focusing on Traumatic Brain Injury.

J Integr Neurosci

January 2025

Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil.

Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!