Grinding of a one-dimensional (1-D) ladder coordination polymer (CP), [Zn(μ-CH(3)CO(2))(CF(3)CO(2))bpe] (1), and a hydrogen-bonded 1-D CP, [Cd(CH(3)CO(2))(2)bpe(H(2)O)] (2), with KBr resulted in the exchange of carboxylate by bromide ions and the formation of 1-D zigzag and 2-D CPs respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2cc17358aDOI Listing

Publication Analysis

Top Keywords

mechanochemical reactions
4
reactions coordination
4
coordination polymers
4
polymers grinding
4
grinding kbr
4
kbr grinding
4
grinding one-dimensional
4
one-dimensional 1-d
4
1-d ladder
4
ladder coordination
4

Similar Publications

We demonstrate the application of mechanochemistry in the synthesis of indolone-based photoswitches (hemiindigos, hemithioindigos, and oxindoles) via Knoevenagel condensation reactions. Utilizing ball-milling and an organic base (piperidine) acting as catalyst and solvent for liquid assisted grinding (LAG) conditions, we achieve rapid, solvent-free transformations, obtaining a set of known and previously unreported photoswitches, including highly functional amino acid-based photoswitches, multichromophoric derivatives and photoswitchable cavitands based on resorcin[4]arenes. The reaction under mechanochemical conditions gives moderate-to-high yields and is highly stereoselective leading to Z-isomers of hemiindigos and hemithioindigos and E-isomers of oxindoles.

View Article and Find Full Text PDF

Mechanochemical destruction of perfluorooctane sulfonate (PFOS) using boron carbide (BC).

J Hazard Mater

December 2024

State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESP), Beijing, China; Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing, China; Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China. Electronic address:

Widespread detection in soils and sediments underscores the potential threats posed by persistent, bioaccumulative and toxic perfluorooctane sulfonate (PFOS) to ecosystems and organisms. Nevertheless, the formidable energy of the C-F bond imparts stability and hampers degradation. This study investigates the potential of boron carbide (BC), a hard-ceramic material often utilized in armor and abrasion contexts, for degrading solid-phase PFOS through ball milling.

View Article and Find Full Text PDF

Mechanochemical Deracemization: A Sustainable Approach to Enantiopurity.

Chemistry

January 2025

Department of Molecular Chemistry, Materials and Catalysis, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place Louis Pasteur, 1 bte L4.01.06, 1348, Louvain-La-Neuve, Belgium.

We introduce mechanochemical deracemization (MCDR) as a novel strategy for obtaining enantiopure compounds. This study demonstrates the successful transposition of six archetypical deracemization reactions from a solvent-based to a solvent-minimized ball milling environment. The scope includes a ketone, isoindolinones, imines, an ester, and an inorganic compound, all of which deracemized successfully.

View Article and Find Full Text PDF

Biotin[6]uril, a chiral, water-soluble and anion binding macrocycle, is formed via dynamic covalent chemistry. In this study, we present a scalable and high-yielding synthesis of biotin[6]uril via a mechanochemical solid-state approach. The optimized protocol involves mechanical grinding of solid D-biotin with paraformaldehyde in the presence of 0.

View Article and Find Full Text PDF

FeS-based nanocomposites: A promising approach for sustainable environmental remediation - Focus on adsorption and photocatalysis - A review.

J Environ Manage

January 2025

Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Poland; School of Civil, Environmental, and Architectural Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea. Electronic address:

Population expansion, industrialization, urban development, and climate changes increased the water crisis in terms of drinking water availability. Among the various nanomaterials for nanoremediation towards water treatment, FeS-based nanocomposites have emerged as promising candidates in the adsorptive and photocatalytic removal of contaminants. This paper, therefore, evaluates the potential of FeS-based nanocomposites for environmental applications, more specifically the combined use of adsorption and photocatalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!