Mice carrying a deletion of the adhesive extracellular domain of the desmosomal cadherin desmoglein 2 develop an arrhythmogenic right ventricular cardiomyopathylike phenotype with ventricular dilation, fibrosis and arrhythmia. To unravel the sequence of myocardial alterations and to identify potential pathomechanisms, histological analyses were performed on mutant hearts from the juvenile to the adult state, i.e., between 2 and 13 weeks. At an age of 2 weeks 30% of mutants presented lesions,which were visible as white plaques on the heart surface or in the septum. From 4 weeks onwards, all mutants displayed a cardiac phenotype. Dying cardiomyocytes with calcification were found in lesions of all ages. But lesions of young mutant animals contained high amounts of CD45+ immune cells and little collagen fibers, whereas lesions of the older animals were collagen-rich and harbored only a small but still significantly increased number of CD45+ cells. Electron microscopy further showed that distinct desmosomes cannot be distinguished in intercalated discs of mutant hearts. Widening of the intercellular cleft and even complete dissociation of intercalated discs were often observed close to lesions. Disturbed sarcomer structure, altered Z-discs, multiple autophagic vacuoles and swollen mitochondria were other prominent pathological features. Taken together, the following scenario is suggested: mutant desmoglein 2 cannot fully support the increased mechanical requirements placed on intercalated disc adhesion during postnatal heart development, resulting in compromised adhesion and cell stress. This induces cardiomyocyte death, aseptic inflammation and fibrotic replacement. The acute stage of scar formation is followed by permanent impairment of the cardiac function.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00441-011-1322-3DOI Listing

Publication Analysis

Top Keywords

mutant hearts
8
intercalated discs
8
histological ultrastructural
4
ultrastructural abnormalities
4
abnormalities murine
4
murine desmoglein
4
desmoglein 2-mutant
4
2-mutant hearts
4
hearts mice
4
mice carrying
4

Similar Publications

Pathogenic variants in , encoding dynamin-like protein-1 (DRP1), cause a lethal encephalopathy. DRP1 defective function results in altered mitochondrial networks, characterized by elongated/spaghetti-like, highly interconnected mitochondria. We validated in yeast the pathogenicity of a de novo variant identified by whole exome sequencing performed more than 10 years after the patient's death.

View Article and Find Full Text PDF

Decoding Codon Bias: The Role of tRNA Modifications in Tissue-Specific Translation.

Int J Mol Sci

January 2025

Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.

The tRNA epitranscriptome has been recognized as an important player in mRNA translation regulation. Our knowledge of the role of the tRNA epitranscriptome in fine-tuning translation via codon decoding at tissue or cell levels remains incomplete. We analyzed tRNA expression and modifications as well as codon optimality across seven mouse tissues.

View Article and Find Full Text PDF

Abnormal development of the second heart field significantly contributes to congenital heart defects, often caused by disruptions in tightly regulated molecular pathways. , a gene encoding a protein with SET and MYND domains, is essential for heart and skeletal muscle development. Mutations in SMYD1 result in severe cardiac malformations and misregulation of expression in mammals.

View Article and Find Full Text PDF

Serpina3k lactylation protects from cardiac ischemia reperfusion injury.

Nat Commun

January 2025

State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.

Lactate produced during ischemia-reperfusion injury is known to promote lactylation of proteins, which play controversial roles. By analyzing the lactylomes and proteomes of mouse myocardium during ischemia-reperfusion injury using mass spectrometry, we show that both Serpina3k protein expression and its lactylation at lysine 351 are increased upon reperfusion. Both Serpina3k and its human homolog, SERPINA3, are abundantly expressed in cardiac fibroblasts, but not  in cardiomyocytes.

View Article and Find Full Text PDF

Heart failure (HF) is a leading cause of death worldwide. We have shown that pressure overload (PO)-induced inflammatory cell recruitment leads to heart failure in IL-10 knockout (KO) mice. However, it's unclear if PO-induced inflammatory cells also target the gut mucosa, causing gut dysbiosis and leakage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!