Induced pluripotent stem (iPS)-like cancer cells (iPC) by the introduction of defined transcription factors reduce the prevalence of the malignant phenotype of digestive system cancer cells, but the induction efficiency is low. The role of hypoxia and TP53 deficiency in iPC cell generation remain unclear. Cellular reprogramming was performed by retroviral infection with OCT3/4, SOX2, KLF4 and c-MYC of wild-type HCT116 colorectal cancer cells and mutant TP53-deficient HCT116 cells. Cells were cultured in normoxia (21% O2) or hypoxia (5% O2) for 30 days after transduction, and the response to hypoxia and comparison of cellular proliferation, invasion and tumourigenesis before and after iPC cell generation were studied. iPC cell generation from wild-type HCT116 cells in hypoxia was approximately 4-times greater than in normoxia (p<0.05), and TP53 deficiency increased conversion efficiency significantly in normoxia (p<0.05). Significant involvement of hypoxia-inducible factors was observed in an immature carbohydrate epitope, Tra-1-60+, colony formation. Generated iPC cells exhibited multi-differentiation potential. Although the iPC cells in hypoxia exhibited reduced proliferation, invasiveness and tumourigenicity, TP53 deficiency in iPC cells resulted in higher tumourigenicity than in wild-type cells. Both hypoxia and TP53 deficiency increase iPC cell generation. TP53 deficiency can also result in deleterious mutations, whereas hypoxia may impact molecular targets of epigenome normalisation.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijo.2012.1346DOI Listing

Publication Analysis

Top Keywords

cancer cells
12
ipc cell
12
cell generation
12
hypoxia tp53
8
tp53 deficiency
8
induced pluripotent
8
pluripotent stem
8
wild-type hct116
8
hct116 cells
8
cells
6

Similar Publications

Confined cell migration along extracellular matrix space in vivo.

Proc Natl Acad Sci U S A

January 2025

Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.

Collective migration of cancer cells is often interpreted using concepts derived from the physics of active matter, but the experimental evidence is mostly restricted to observations made in vitro. Here, we study collective invasion of metastatic cancer cells injected into the mouse deep dermis using intravital multiphoton microscopy combined with a skin window technique and three-dimensional quantitative image analysis. We observe a multicellular but low-cohesive migration mode characterized by rotational patterns which self-organize into antiparallel persistent tracks with orientational nematic order.

View Article and Find Full Text PDF

Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.

View Article and Find Full Text PDF

Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].

View Article and Find Full Text PDF

The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.

View Article and Find Full Text PDF

Computational-aided rational mutation design of pertuzumab to overcome active HER2 mutation S310F through antibody-drug conjugates.

Proc Natl Acad Sci U S A

January 2025

Laboratory of Precision Medicine and Biopharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

Recurrent missense mutations in the human epidermal growth factor receptor 2 (HER2) have been identified across various human cancers. Among these mutations, the active S310F mutation in the HER2 extracellular domain stands out as not only oncogenic but also confers resistance to pertuzumab, an antibody drug widely used in clinical cancer therapy, by impeding its binding. In this study, we have successfully employed computational-aided rational design to undertake directed evolution of pertuzumab, resulting in the creation of an evolved pertuzumab variant named Ptz-SA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!