Objective: Genetic factors are thought to be one of the causes of individual variability in the adverse reactions observed in cancer patients who received gemcitabine therapy. However, genetic factors determining the risk of adverse reactions of gemcitabine are not fully understood.

Patients And Methods: To identify a genetic factor(s) determining the risk of gemcitabine-induced leukopenia/neutropenia, we conducted a genome-wide association study, by genotyping over 610 000 single nucleotide polymorphisms (SNPs), and a replication study in a total of 174 patients, including 54 patients with at least grade 3 leukopenia/neutropenia and 120 patients without any toxicities.

Results: We identified four loci possibly associated with gemcitabine-induced leukopenia/neutropenia [rs11141915 in DAPK1 on chromosome 9q21, combined P=1.27×10, odds ratio (OR)=4.10; rs1901440 on chromosome 2q12, combined P=3.11×10, OR=34.00; rs12046844 in PDE4B on chromosome 1p31, combined P=4.56×10, OR=4.13; rs11719165 on chromosome 3q29, combined P=5.98×10, OR=2.60]. When we examined the combined effects of these four SNPs, by classifying patients into four groups on the basis of the total number of risk genotypes of these four SNPs, significantly higher risks of gemcitabine-induced leukopenia/neutropenia were observed in the patients having two and three risk genotypes (P=6.25×10, OR=11.97 and P=4.13×10, OR=50.00, respectively) relative to patients with zero or one risk genotype.

Conclusion: We identified four novel SNPs associated with gemcitabine-induced severe leukopenia/neutropenia. These SNPs might be applicable in predicting the risk of hematological toxicity in patients receiving gemcitabine therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1097/FPC.0b013e32834e9ebaDOI Listing

Publication Analysis

Top Keywords

gemcitabine therapy
12
genetic factors
12
gemcitabine-induced leukopenia/neutropenia
12
patients
9
genome-wide association
8
association study
8
cancer patients
8
patients receiving
8
receiving gemcitabine
8
adverse reactions
8

Similar Publications

Pancreatic ductal adenocarcinoma (PDAC) is a very challenging disease with a very poor prognosis. It is characterized by a dense desmoplastic stroma that hampers drug penetration and limits the effectiveness of conventional chemotherapy (CT). As an alternative, the combination of CT with hyperthermia (HT) has been proposed as an innovative treatment modality for PDAC.

View Article and Find Full Text PDF

Hypoxia is a major obstacle in the treatment of solid tumors because it causes immune escape and therapeutic resistance. Drug penetration into the hypoxic regions of tumor microenvironment (TME) is extremely limited. This study proposes using the unidirectional fluid flow property of low-intensity pulsed ultrasound (LIPUS) to overcome drug penetration limitations in the TME.

View Article and Find Full Text PDF

Background: In a randomized clinical controlled trial (PA.3) conducted by the Canadian Cancer Trials Group, the effects of gemcitabine combined with the targeted drug erlotinib (GEM-E) gemcitabine alone (GEM) on patients with unresectable, locally advanced, or metastatic pancreatic cancer were studied. This trial statistically demonstrated that the GEM-E combination therapy moderately improves overall survival (OS) of patients.

View Article and Find Full Text PDF

Aim: This study aimed to determine the maximum tolerated dose (MTD) of the urokinase plasminogen activator (uPA) inhibitor upamostat (LH011) in combination with gemcitabine for locally advanced unresectable or metastatic pancreatic cancer.

Method: Seventeen patients were enrolled and received escalating doses of oral LH011 (100, 200, 400, or 600 mg) daily alongside 1000 mg/m of gemcitabine. Safety profiles, tumor response (including response rate and progression-free survival), pharmacokinetics, and changes in CA199 and D-dimer levels were assessed.

View Article and Find Full Text PDF

Abundant infiltration of tumor-associated macrophages (TAMs) within the tumor stroma plays a pivotal role in inducing immune escape in pancreatic cancer (PC). Lactate serves as a direct regulator of macrophage polarization and functions, although the precise regulation mechanism remains inadequately understood. Our study revealed that PC cells (PCs) promote macrophage polarization toward M2d through high lactate secretion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!