Although zinc oxide nanoparticles (ZnONPs) have been applied in nanotechnology, their kinetics and tissue distribution in vivo are unknown. Here we compared the kinetics and tissue distribution of 10 nm (65)ZnONPs, 71 nm (65)ZnONPs and (65)Zn(NO(3))(2) in mice after intravenous injection. The areas under the curves and the half-lives in the second compartment of (65)Zn(NO(3))(2) were greater than those of (65)ZnONPs; the kinetic parameters were similar for both (65)ZnONPs. However, the tissue distributions for the three forms were different. ZnONPs preferentially accumulated in the liver and spleen at 24 h. At day 28, (65)Zn concentration was highest in bone and the proportion of recovered (65)Zn radioactivity was highest in the carcass; these had the same ranking, 10 nm (65)ZnONPs > 71 nm (65)ZnONPs>  (65)Zn(NO(3))(2). Although more than 80% of the 10 nm (65)ZnONPs had been excreted by day 28, greater amounts of the 10 nm (65)ZnONPs than the 71 nm (65)ZnONPs or (65)Zn(NO(3))(2) had accumulated in other organs (brain, lung, heart and kidneys). Zn ions seem to have a longer half-life in the plasma, but ZnONPs show greater tissue accumulation. Although the size of the ZnONPs had no obvious effect on the kinetics, nevertheless the smaller ZnONPs tended to accumulate preferentially in some organs.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/23/8/085102DOI Listing

Publication Analysis

Top Keywords

kinetics tissue
12
tissue distribution
12
10 nm 65znonps
12
zinc oxide
8
oxide nanoparticles
8
65znonps 71 nm
8
71 nm 65znonps
8
65znonps 65znno32
8
65znonps
7
znonps
5

Similar Publications

Probing Single-Cell Adhesion Kinetics and Nanomechanical Force with Surface Plasmon Resonance Imaging.

ACS Nano

January 2025

Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China.

Single cell adhesion plays a significant role in numerous physiological and pathological processes. Real-time imaging and quantification of single cell adhesion kinetics and corresponding cell-substrate mechanical interaction forces are crucial for elucidating the cellular mechanisms involved in tissue formation, immune responses, and cancer metastasis. Here, we present the development of a plasmonic-based nanomechanical sensing and imaging system (PNMSi) for the real-time measurement of single cell adhesion kinetics and associated nanomechanical forces with plasmonic tracking and monitoring of cell-substrate interactions and the accompanying nanoscale fluctuations.

View Article and Find Full Text PDF

Duchenne gait, characterized by an ipsilateral trunk lean towards the affected stance limb, compensates for weak hip abductor muscles, notably the gluteus medius (GM). This study aims to investigate how electromyographic (EMG) cluster analysis of GM contributes to a better understanding of Duchenne gait in patients with cerebral palsy (CP). We analyzed retrospective gait data from 845 patients with CP and 65 typically developed individuals.

View Article and Find Full Text PDF

Purpose: The sphingosine-1-phosphate receptor-1 (S1PR) is involved in regulating responses to neuroimmune stimuli. There is a need for S1PR-specific radioligands with clinically suitable brain pharmcokinetic properties to complement existing radiotracers. This work evaluated a promising S1PR radiotracer, [F]TZ4877, in nonhuman primates.

View Article and Find Full Text PDF

Microneedles (MNs) appear as a transformative and minimally invasive platform for transdermal drug delivery, representing a highly promising strategy in wound healing therapeutics. This technology, entailing the fabrication of micron-scale needle arrays, enables the targeted and efficient delivery of bioactive agents into the epidermal and dermal layers without inducing significant pain or discomfort. The precise penetration of MNs facilitates localized and sustained drug release, which significantly enhances tissue regeneration and accelerates wound closure.

View Article and Find Full Text PDF

Recurrent aphthous stomatitis (RAS) is a common condition that manifests as ulcerative lesions in the oral mucosa. In this study, bilayer, mucoadhesive nanofibers loaded with pomegranate flower extract (PFE) were prepared using thiolated gelatin (TGel) and thiolated chitosan (TCS) as the active layer and drug-free polycaprolactone (PCL) as the backing layer. Gelatin (Gel) and chitosan (CS) were successfully thiolated (proven by Ellman's assay, solubility, H NMR, FTIR, Raman spectroscopy, and XRD) and electrospun into active nanofibrous layers with a diameter of 356.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!