A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Early stiffening and softening of collagen: interplay of deformation mechanisms in biopolymer networks. | LitMetric

Collagen networks, the main structural/mechanical elements in biological tissues, increasingly serve as biomimetic scaffolds for cell behavioral studies, assays, and tissue engineering, and yet their full spectrum of nonlinear behavior remains unclear. Here, with self-assembled type-I collagen as model, we use metrics beyond those in standard single-harmonic analysis of rheological measurements to reveal strain-softening and strain-stiffening of collagen networks both in instantaneous responses and at steady state. The results show how different deformation mechanisms, such as deformation-induced increase in the elastically active fibrils, nonlinear extension of individual fibrils, and slips in the physical cross-links in the network, can lead to the observed complex nonlinearity. We demonstrate how comprehensive rheological analyses can uncover the rich mechanical properties of biopolymer networks, including the above-mentioned softening as well as an early strain-stiffening, which are important for understanding physiological response of biological materials to mechanical loading.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm2015812DOI Listing

Publication Analysis

Top Keywords

deformation mechanisms
8
biopolymer networks
8
collagen networks
8
early stiffening
4
stiffening softening
4
collagen
4
softening collagen
4
collagen interplay
4
interplay deformation
4
mechanisms biopolymer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!