Discovery of small molecular inhibitors for treatment of rheumatoid arthritis is a major ongoing effort within the pharmaceutical industry. Spleen tyrosine kinase (SYK) is one of leading small molecular targets with regard to clinical development primarlly due to efforts by Rigel and Portola. In this review, we provide a comprehensive overview of the SYK patent landscape. The patent literature we evaluated relates to any organization that has filed applications that imply that SYK is the intended target. The interest in SYK was initiated in the early 2000's with many organizations, including several large pharmaceutical companies, and has been active for years. In general, the structural theme of most of the compounds in these applications is a traditional ATP competitive inhibitor with each organization having a different hinge binding element. In general, the attachment to the hinge is an aryl amine that is decorated with a solubilizing group. The other substituents are broadly variable across the numerous companies indicating that SYK has significant flexibility in its interactions in that portion of the kinase. This overview of the SYK patent literature and the learnings of the inhibitors' substitution patterns would be an important reference for anyone working in this area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/187221312800166895 | DOI Listing |
AAPS PharmSciTech
January 2025
School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India, 110017.
The biopharmaceutical industry has witnessed significant growth in the development and approval of biosimilars. These biosimilars aim to provide cost-effective alternatives to expensive originator biosimilars, alleviating financial pressures within healthcare. The manufacturing of biosimilars is a highly complex process that involves several stages, each of which must meet strict regulatory standards to ensure that the final product is highly similar to the reference biologic.
View Article and Find Full Text PDFbioRxiv
January 2025
Institute for Systems Biology, Seattle, WA, USA.
Success of phage therapies is limited by bacterial defenses against phages. While a large variety of anti-phage defense mechanisms has been characterized, how expression of these systems is distributed across individual cells and how their combined activities translate into protection from phages has not been studied. Using bacterial single-cell RNA sequencing, we profiled the transcriptomes of ~50,000 cells from cultures of a human pathobiont, , infected with a lytic bacteriophage.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain.
Phosphodiesterase-4 (PDE4) is involved in the synthesis of inflammatory cytokines that mediate several chronic inflammatory disorders, including psoriasis and atopic dermatitis. In recent years, the therapeutic armamentarium in dermatology has expanded with the introduction of PDE4 inhibitors, both in oral and topical formulations. PDE4 inhibitors have gained increasing interest due to their remarkable safety record and ease of prescription, as evidenced by the recent influx of literature detailing its off-label uses.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Mechanical Engineering, Debre Markos University, Debre Markos 251, Ethiopia.
In the rapidly evolving biobased materials innovation landscape, our research identifies key players and explores the evolutionary perspective of biobased innovation, offering insights into promising research areas to be further developed by biobased material scientists in search of exploiting their knowledge in novel applications. Despite the crucial role of these materials in promoting sustainable production and consumption models, systematic studies on the current innovation terrain are lacking, leaving gaps in understanding key players, emerging technologies, and market trends. To address this void, we focused on examining patents related to biobased monomers and polymers, aiming to describe the innovation strategies and business dynamics of leading assignees.
View Article and Find Full Text PDFMar Drugs
December 2024
CESAM-Centre for Environmental and Marine Studies, Department of Environment and Planning, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal.
This review is focused on the research, innovation and technological breakthroughs on marine invertebrate collagens and their applications. The findings reveal that research dates back to the 1970s, and after a period of reduced activity, interest in collagens from several marine invertebrate groups was renewed around 2008, likely driven by the increased commercial interest in these biomolecules of marine origin. Research and development are predominantly reported from China and Japan, highlighting significant research interest in cnidarians (jellyfish), echinoderms (sea cucumbers, sea urchins and starfish), molluscs (squid and cuttlefish) and sponges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!