The role of brassinosteroids in plant growth and development has been well-characterized in a number of plant species. However, very little is known about the role of brassinosteroids in maize. Map-based cloning of a severe dwarf mutant in maize revealed a nonsense mutation in an ortholog of a brassinosteroid C-6 oxidase, termed brd1, the gene encoding the enzyme that catalyzes the final steps of brassinosteroid synthesis. Homozygous brd1-m1 maize plants have essentially no internode elongation and exhibit no etiolation response when germinated in the dark. These phenotypes could be rescued by exogenous application of brassinolide, confirming the molecular defect in the maize brd1-m1 mutant. The brd1-m1 mutant plants also display alterations in leaf and floral morphology. The meristem is not altered in size but there is evidence for differences in the cellular structure of several tissues. The isolation of a maize mutant defective in brassinosteroid synthesis will provide opportunities for the analysis of the role of brassinosteroids in this important crop system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3266906 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0030798 | PLOS |
BMC Plant Biol
January 2025
Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
Background: Flowering is a complex, finely regulated process involving multiple phytohormones and transcription factors. However, flowering regulation in pitaya (Hylocereus polyrhizus) remains largely unexamined. This study addresses this gap by investigating gibberellin-3 (GA3) effects on flower bud (FB) development in pitaya.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Universitätsstrasse 2, 8092 Zurich, Switzerland.
The Arabidopsis root apical meristem is an excellent model for studying plant organ growth that involves a coordinated process of cell division, elongation, and differentiation, while each tissue type develops on its own schedule. Among these tissues, the protophloem is particularly important, differentiating early to supply nutrients and signalling molecules to the growing root tip. The OCTOPUS (OPS) protein and its homolog OPS-LIKE 2 (OPL2) are essential for proper root protophloem differentiation and, likely through this role, indirectly promote root growth.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, China.
The bHLH (basic Helix-Loop-Helix) transcription factor serves as pivotal controller in plant growth and development. In a previous study, the overexpression of in L. Ailsa Craig (AC) altered the JA (Jasmonic acid) response and endogenous GA (Gibberellic acid) content.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Jiangxi Provincial Key Laboratory of Plant Germplasm Innovation and Genetic Improvement, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China.
Adventitious root (AR) formation in plants originates from non-root organs such as leaves and hypocotyls. Auxin signaling is essential for AR formation, but the roles of other phytohormones are less clear. In , at least two distinct mechanisms can produce ARs, either from hypocotyls as part of the general root architecture or from wounded organs during de novo root regeneration (DNRR).
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China.
In plants, calcium (Ca) serves as an essential nutrient and signaling molecule. Melatonin is a biologically active and multi-functional hormone that plays an important role in improving nutrient use efficiency. However, its involvement in plant responses to Ca deficiency remains largely unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!