The development of drugs for neglected infectious diseases often uses parasite-specific enzymes as targets. We here demonstrate that parasite enzymes with highly conserved human homologs may represent a promising reservoir of new potential drug targets. The cyclic nucleotide-specific phosphodiesterases (PDEs) of Trypanosoma brucei, causative agent of the fatal human sleeping sickness, are essential for the parasite. The highly conserved human homologs are well-established drug targets. We here describe what is to our knowledge the first pharmacological validation of trypanosomal PDEs as drug targets. High-throughput screening of a proprietary compound library identified a number of potent hits. One compound, the tetrahydrophthalazinone compound A (Cpd A), was further characterized. It causes a dramatic increase of intracellular cyclic adenosine monophosphate (cAMP). Short-term cell viability is not affected, but cell proliferation is inhibited immediately, and cell death occurs within 3 days. Cpd A prevents cytokinesis, resulting in multinucleated, multiflagellated cells that eventually lyse. These observations pharmacologically validate the highly conserved trypanosomal PDEs as potential drug targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3379837 | PMC |
http://dx.doi.org/10.1093/infdis/jir857 | DOI Listing |
J Infect Dis
January 2025
Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Italy.
Background: To assess the impact of attaining aggressive beta-lactam pharmacokinetic/pharmacodynamic (PK/PD) targets on clinical efficacy in critical orthotopic liver transplant (OLT) recipients with documented early Gram-negative infections.
Methods: OLT recipients admitted to the post-transplant ICU between June 2021 and May 2024 having documented Gram-negative infections treated with targeted therapy continuous infusion (CI) beta-lactams, and undergoing therapeutic drug monitoring (TDM)-guided beta-lactam dosing adjustment in the first 72 hours were prospectively enrolled. Free steady-state concentrations (fCss) of beta-lactams (BL) and/or of beta-lactamase inhibitors (BLI) were calculated, and aggressive PK/PD target attainment was measured.
J Nat Prod
January 2025
Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States.
Cannabidiol (CBD) is a natural product associated with a wide range of biological and therapeutic activities. Despite the widespread cultural acceptance of CBD as a medicinal agent, much remains to be determined regarding its precise mechanism(s) of action in treating multiple conditions. CBD has been shown to promiscuously interact with several neurological targets with varying affinities.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Cellular and Structural Physiology Laboratory, Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, Bunkyo-ku, Tokyo 113-8510, Japan.
Pathogen mutations present an inevitable and challenging problem for therapeutics and the development of mutation-tolerant anti-infective drugs to strengthen global health and combat evolving pathogens is urgently needed. While spike proteins on viral surfaces are attractive targets for preventing viral entry, they mutate frequently, making it difficult to develop effective therapeutics. Here, we used a structure-guided strategy to engineer an inhibitor peptide against the SARS-CoV-2 spike, called CeSPIACE, with mutation-tolerant and potent binding ability against all variants to enhance affinity for the invariant architecture of the receptor-binding domain (RBD).
View Article and Find Full Text PDFAnnu Rev Pathol
January 2025
MASLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, California, USA; email:
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global health problem, affecting ∼1 billion people. This condition is well established to have a heritable component with strong familial clustering. With the extraordinary breakthroughs in genetic research techniques coupled with their application to large-scale biobanks, the field of genetics in MASLD has expanded rapidly.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
February 2025
Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.
Application of one-dimensional nanofibers have witnessed exponential growth over the past few decades and are still emerging with their excellent physicochemical and electrical properties. The driving force behind this intriguing transition lies in their unique high surface-to-volume ratio, ubiquitous nanodomains, improved tensile strength, and flexibility to incorporate deliberate functionalities required for specific and advanced applications. Besides numerous benefits, nanomaterials may adversely interact with biological tissues and potentially be cytotoxic and carcinogenic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!