The purpose of this study was to explore whether there is evidence of heat acclimatization in the words used to express thermal sensation. A total of 458 urban Japanese and 601 Indonesians participated in a questionnaire. In addition, in a preliminary survey, 39 native English speakers in the UK participated. Our results showed that (1) for Indonesians, the closest thermal descriptor of a feeling of thermal comfort was 'cool' (75%) followed by 'slightly cool' (7%), 'slightly cold' (5%) and 'cold' (5%), while Japanese responses were distributed uniformly among descriptors 'cool', 'slightly cool', 'neither', 'slightly warm', and 'warm'; (2) the closest thermal descriptors of a feeling of discomfort for Indonesians were less affected by individual thermal susceptibility (vulnerability) than those for Japanese; (3) in the cases where 'cool' and 'slightly cold' were imagined in the mind, the descriptors were cognized as a thermal comfortable feeling by 97% and 57% of Indonesians, respectively; (4) the most frequently voted choice endorsing hot weather was 'higher than 32°C' for Indonesians and 'higher than 29°C' for Japanese respondents; for cold weather, 'lower than 15°C' for Japanese and 'lower than 20°C' for Indonesians. In summary, the descriptor 'cool' in Indonesians connotes a thermally comfortable feeling, but the inter-zone between hot and cold weather that was judged in the mind showed a upward shift when compared to that of Japanese. It is suggested that linguistic heat acclimatization exists on a cognitive level for Indonesians and is preserved in the words of thermal descriptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00484-011-0519-1 | DOI Listing |
Int J Biol Sci
January 2025
Department of Otolaryngology Head and Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China.
Heat acclimation (HA) is an evolutionarily conserved trait that enhances tolerance to novel stressors by inducing heat shock proteins (HSPs). However, the molecular mechanisms underlying this phenomenon remain elusive. In this study, we established a HA mouse model through intermittent heat stimulation.
View Article and Find Full Text PDFBMC Biol
December 2024
State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
Background: Global climate change significantly impacts ecosystems, particularly through temperature fluctuations that affect insect physiology and behavior. As poikilotherms, insect pests such as the globally devastating diamondback moth (DBM), Plutella xylostella, are especially vulnerable to rising temperatures and extreme heat events, necessitating effective adaptive mechanisms.
Results: Here we demonstrate the roles of zinc finger proteins (ZFPs) in mediating thermal adaptability in DBM.
J Exp Bot
December 2024
School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia.
During their lifespan, plants are often exposed to a broad range of stresses that change their redox balance and lead to accumulation of reactive oxygen species (ROS). The traditional view is that this comes with negative consequences to cells structural integrity and metabolism and, to prevent this, plants evolved a complex and well-coordinated antioxidant defence system that relies on the operation of a range of enzymatic and non-enzymatic antioxidants (AO). Due to the simplicity of measuring their activity, and in the light of the persistent dogma that stress-induced ROS accumulation is detrimental for plants, it is not surprising that enzymatic AO have often been advocated as suitable proxies for stress tolerance, as well as potential targets for improving tolerance traits.
View Article and Find Full Text PDFJ Exp Biol
December 2024
Department of Biology, University of Central Oklahoma, Edmond, OK 73034, USA.
Organisms may simultaneously face thermal, desiccation and nutritional stress under climate change. Understanding the effects arising from the interactions among these stressors is relevant for predicting organisms' responses to climate change and for developing effective conservation strategies. Using both dynamic and static protocols, we assessed for the first time how sublethal desiccation exposure (at 16.
View Article and Find Full Text PDFPhysiol Plant
December 2024
Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India.
Heat stress impacts photosynthesis and carbohydrate metabolism, challenging food security. To comprehend the mechanisms of thermotolerance, we examined the role of ethylene (ET) and hydrogen sulfide (HS) with or without sulfur (S) in rice (Oryza sativa L.).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!