Density Functional Theory calculations have been performed for the σ-hydroboryl complexes of iron, ruthenium and osmium [(H)(2)Cl(PMe(3))(2)M(σ-H-BR)] (M = Fe, Ru, Os; R = OMe, NMe(2), Ph) at the BP86/TZ2P/ZORA level of theory in order to understand the interactions between metal and HBR ligands. The calculated geometries of the complexes [(H)(2)Cl(PMe(3))(2)Ru(HBNMe(2))], [(H)(2)Cl(PMe(3))(2)Os(HBR)] (R = OMe, NMe(2)) are in excellent agreement with structurally characterized complexes [(H)(2)Cl(P(i)Pr(3))(2)Os(σ-H-BNMe(2))], [(H)(2)Cl(P(i)Pr(3))(2)Os{σ-H-BOCH(2)CH(2)OB(O(2)CH(2)CH(2))}] and [(H)(2)Cl(P(i)Pr(3))(2)Os(σ-H-BNMe(2))]. The longer calculated M-B bond distance in complex [(H)(2)Cl(PMe(3))(2)M(σ-H-BNMe(2))] are due to greater B-N π bonding and as a result, a weaker M-B π-back-bonding. The B-H2 bond distances reveal that (i) iron complexes contain bis(σ-borane) ligand, (ii) ruthenium complexes contain (σ-H-BR) ligands with a stretched B-H2 bond, and (iii) osmium complexes contain hydride (H2) and (σ-H-BR) ligands. The H-BR ligands in osmium complexes are a better trans-directing ligand than the Cl ligand. Values of interaction energy, electrostatic interaction, orbital interaction, and bond dissociation energy for interactions between ionic fragments are very large and may not be consistent with M-(σ-H-BR) bonding. The EDA as well as NBO and AIM analysis suggest that the best bonding model for the M-σ-H-BR interactions in the complexes [(H)(2)Cl(PMe(3))(2)M(σ-H-BR)] is the interaction between neutral fragments [(H)(2)Cl(PMe(3))(2)M] and [σ-H-BR]. This becomes evident from the calculated values for the orbital interactions. The electron configuration of the fragments which is shown for C in Fig. 1 experiences the smallest change upon the M-σ-H-BR bond formation. Since model C also requires the least amount of electronic excitation and geometry changes of all models given by the ΔE(prep) values, it is clearly the most appropriate choice of interacting fragments. The π-bonding contribution is 14-22% of the total orbital contribution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2dt11921h | DOI Listing |
J Gerontol B Psychol Sci Soc Sci
January 2025
Linguistics and English as a Second Language, Faculty of Arts, University of Groningen, Groningen, the Netherlands.
Objectives: The complex life experience of speaking two or more languages has been suggested to preserve cognition in older adulthood. This study aimed to investigate this further by examining the relationship between multilingual experience variables and cognitive functioning in a large cohort of older adults in the diversely multilingual north of the Netherlands.
Method: 11,332 older individuals participating in the Lifelines Cohort Study completed a language experience questionnaire.
Neurol Sci
January 2025
Department of Neurology, Peking Union Medical College Hospital, 100730, Beijing, China.
MAGMA
January 2025
Aix Marseille Univ, CNRS, CRMBM, Marseille, France.
Objective: Segmentation of individual thigh muscles in MRI images is essential for monitoring neuromuscular diseases and quantifying relevant biomarkers such as fat fraction (FF). Deep learning approaches such as U-Net have demonstrated effectiveness in this field. However, the impact of reducing neural network complexity remains unexplored in the FF quantification in individual muscles.
View Article and Find Full Text PDFMol Diagn Ther
January 2025
Istituto Europeo di Oncologia, IRCCS, Via Adamello 16, 20139, Milan, Italy.
Background: Predicting response to targeted cancer therapies increasingly relies on both simple and complex genetic biomarkers. Comprehensive genomic profiling using high-throughput assays must be evaluated for reproducibility and accuracy compared with existing methods.
Methods: This study is a multicenter evaluation of the Oncomine™ Comprehensive Assay Plus (OCA Plus) Pan-Cancer Research Panel for comprehensive genomic profiling of solid tumors.
Am J Clin Dermatol
January 2025
Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
Pityriasis rosea (PR) is a prevalent dermatological condition characterized by a distinctive herald patch, followed by secondary eruptions, often forming a "Christmas tree" pattern on the trunk. Despite its recognizable clinical presentation, the etiology of PR remains uncertain, with hypotheses pointing to both infectious and noninfectious origins. Human herpesviruses (HHV) 6 and 7 have been implicated, with evidence suggesting viral reactivation as a potential trigger.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!