Ontogeny of angiotensin-converting enzyme 2.

Pediatr Res

Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, USA.

Published: January 2012

Introduction: This study examined the temporal expression of angiotensin (Ang)-converting enzyme 2 (ACE2) during renal, heart, lung, and brain organogenesis in the mouse.

Results: We demonstrate that kidney ACE2 mRNA levels are low on embryonic day (E) 12.5, increase fourfold during development, and decline in adulthood. In extrarenal tissues, ACE2 mRNA levels are also low during early gestation, increase in perinatal period, and peak in adulthood. The lung shows the highest age-related increase in ACE2 mRNA levels followed by the brain, kidney, and heart. ACE2 protein levels and enzymatic activity are high in all organs studied during gestation and decline postnatally. Ang II decreases ACE2 mRNA levels and enzymatic activity in kidneys grown ex vivo. These effects of Ang II are blocked by the specific Ang II AT(1) receptor (AT(1)R) antagonist candesartan, but not by the AT(2) receptor (AT(2)R) antagonist PD123319.

Discussion: We conclude that ACE2 gene and protein expression and enzymatic activity are developmentally regulated in a tissue-specific manner. Ang II, acting through AT(1)R, exerts a negative feedback on ACE2 during kidney development. We postulate that relatively high ACE2 protein levels and enzymatic activity observed during gestation may play a role in kidney, lung, brain, and heart organogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1038/pr.2011.7DOI Listing

Publication Analysis

Top Keywords

ace2 mrna
16
mrna levels
16
enzymatic activity
16
levels enzymatic
12
ace2
9
lung brain
8
levels low
8
ace2 protein
8
protein levels
8
levels
6

Similar Publications

Comparative immunogenicity from different mRNA booster vaccines (directed at WT, BA.1 or BA.4/5 antigens) remains unclear.

View Article and Find Full Text PDF

Monocytic reactive oxygen species-induced T cell apoptosis impairs cellular immune response to SARS-CoV-2 mRNA vaccine.

J Allergy Clin Immunol

January 2025

Institute of Human Genetics, UMR9002, CNRS and Montpellier University; Montpellier, France; Montpellier University; Montpellier, France; Immunology Department, University Hospital; Nîmes, France. Electronic address:

Background: We have recently shown that, during acute severe COVID-19, SARS-CoV-2 spike protein (S) induces a cascade of events resulting in T cell apoptosis. Indeed, by neutralizing the protease activity of its receptor, ACE2, S induces an increase in circulating Angiotensin II (AngII), resulting in monocytic release of reactive oxygen species (ROS) and programmed T cell death.

Objective: Here, we tested whether SARS-CoV-2 mRNA vaccines, known to cause the circulation of the vaccine antigen, S-protein receptor binding domain (RBD), might trigger the same cascade.

View Article and Find Full Text PDF

: While post-acute COVID-19 syndrome is well known and extensively studied, the post-acute COVID vaccination syndrome (PACVS) is a more recent nosological entity that is poorly defined at the immunopathological level, although it shares many symptoms with the sequelae of viral infections. : This single-center retrospective study reports a case series of 17 subjects vaccinated with mRNA or adenoviral vector vaccines who were healthy before vaccination and had never been infected with SARS-CoV-2 but who presented with symptoms similar to PACVS for a median time of 20 months (min 4, max 32). The medical records of all patients referred to our outpatient clinic over a one-year period were retrospectively analyzed.

View Article and Find Full Text PDF

Background: Acute respiratory distress syndrome (ARDS) is a life-threatening and heterogeneous disorder leading to lung injury. To date, effective therapies for ARDS remain limited. Sepsis is a frequent inducer of ARDS.

View Article and Find Full Text PDF

To combat the SARS-CoV-2 pandemic, innovative prevention strategies are needed, including reducing ACE2 expression on respiratory cells. This study screened approved drugs in China for their ability to downregulate ACE2. Daphnetin (DAP) was found to significantly reduce ACE2 mRNA and protein levels in PC9 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!