Xanthomonas oryzae pv oryzae triggers immediate transcriptomic modulations in rice.

BMC Genomics

Division of Plant Biology, Bose Institute, Kankurgachi, Kolkata, India.

Published: January 2012

Background: Xanthomonas oryzae pv oryzae is a devastating pathogen of rice and has been extensively studied as a model pathogen of monocotyledons. Expressional studies in both the contenders have been undertaken in past to understand the molecular mechanism underlying the compatible and incompatible interactions in the pathosystem. Continuous update on database and gene annotations necessitates constant updating on the roles of the new entities as well as reinterpretation of regulations of the previous ones. Moreover the past endeavors have addressed the middle or late defense responses of the rice plant whereas in the present study an attempt has been made to investigate the early defense responses taking place immediately after inoculation.

Results: Microarray was used to study the transcriptional modulations in eighteen days old rice seedling leaves of both susceptible and resistant genotypes one hour after inoculation. In resistant plants as compared to susceptible ones 274 genes were found to be differentially expressed. Annotations could be assigned to 112 up- and 73 down-regulated transcripts and gene interaction maps were generated for 86 transcripts. Expressional data and interaction maps were used to develop a hypothetical scheme of the molecular events taking place during early defense response. Network analysis with the differential transcripts showed up-regulation of major clusters of cell signaling proteins and transcription factors while growth and basal metabolic components were largely found to be down-regulated.

Conclusions: This study provides an understanding of the early defense signaling in rice cells. Components of the calcium and lipid signaling as well as MAPK cascade were modulated, by signals from surface receptors and cytosolic R-proteins, to arouse jasmonic acid and ethylene signaling and suppress auxin signaling through various transcription factors. Abscisic acid modulation was also evident through the expression regulation of transcription factors involved with its functions. Moreover adjustments in expression levels of components of primary as well as secondary metabolism, protein trafficking and turnout were apparent, highlighting the complexity of defense response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3298507PMC
http://dx.doi.org/10.1186/1471-2164-13-49DOI Listing

Publication Analysis

Top Keywords

early defense
12
transcription factors
12
xanthomonas oryzae
8
oryzae oryzae
8
defense responses
8
interaction maps
8
defense response
8
rice
5
defense
5
signaling
5

Similar Publications

Background: Sepsis, a critical global health challenge, accounted for approximately 20% of worldwide deaths in 2017. Although the Sequential Organ Failure Assessment (SOFA) score standardizes the diagnosis of organ dysfunction, early sepsis detection remains challenging due to its insidious symptoms. Current diagnostic methods, including clinical assessments and laboratory tests, frequently lack the speed and specificity needed for timely intervention, particularly in vulnerable populations such as older adults, intensive care unit (ICU) patients, and those with compromised immune systems.

View Article and Find Full Text PDF

and infection in led to species-specific regulatory responses in the host and pathogen.

Microb Genom

January 2025

School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Subang Jaya, Malaysia.

In recent decades, has surpassed as the leading cause of shigellosis, possibly due to species-specific differences in their transcriptomic responses. This study used dual RNA sequencing to analyse the transcriptomic responses of and the two species at early (10 minutes) and late (24 hours) stages of infection. While the nematode defence response was downregulated during both infections, only infection by led to downregulation of sphingolipid metabolism, cadmium ion response and xenobiotic response in .

View Article and Find Full Text PDF

Clinical Characteristics of Snakebite Envenomings in Taiwan.

Toxins (Basel)

December 2024

Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung 402202, Taiwan.

Snakebite envenomings continue to represent a major public health concern in Taiwan because of the presence of various venomous snakes whose habitats intersect with human activities. This review provides a comprehensive analysis of the clinical characteristics, complications, and management strategies associated with snakebite envenomings in Taiwan. Taiwan is inhabited by six principal venomous snakes: , , , , , and , each presenting distinct clinical challenges.

View Article and Find Full Text PDF

is the most common and destructive brown rot agent on peaches. Knowledge of gene expression mediating host-pathogen interaction is essential to manage fungal plant diseases. putative virulence factors have been predicted by genome investigations.

View Article and Find Full Text PDF

The role of Exo70s in plant defense against pathogens and insect pests and their application for crop breeding.

Mol Breed

February 2025

National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China.

Plant diseases caused by pathogens and pests lead to crop losses, posing a threat to global food security. The secretory pathway is an integral component of plant defense. The exocyst complex regulates the final step of the secretory pathway and is thus essential for secretory defense.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!