Hydroxyapatite (HA)-containing polymers have been proposed for improving the biological properties of bone cements. Poly(methyl methacrylate) (PMMA) has long been used to secure orthopedic implants to skeletal bones. The aim of this study was to determine whether the incorporation of HA nanoparticles into the PMMA nanofibrous scaffolds enhances the biological functions of osteoblasts. The number of osteoblasts adhered and proliferated on the PMMA/HA nanofibrous scaffolds was significantly larger than that on the PMMA alone. The cytoskeletal organization and alkaline phosphatase (ALP) activity of the osteoblasts on the PMMA/HA nanofibrous scaffolds were clearly higher than that on the PMMA control. The amount of calcium ions released from 20 wt% HA-containing PMMA nanofibrous scaffolds (PMMA/HA20) was much higher than that released from 10 wt% HA-containing PMMA nanofibrous scaffolds (PMMA/HA10) (HA, 10 wt%). These findings suggested that osteoblast differentiation was accelerated by the incorporation of HA into the PMMA nanofibrous scaffolds. Therefore, the incorporation of HA into the PMMA nanofibrous scaffolds could be a useful method. This can be used for providing PMMA scaffolds with enhanced osteogenic properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1163/156856212X623526 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!