We investigated the heat resistance of an eight-strain cocktail of Salmonella serovars in chicken supplemented with trans cinnamaldehyde (0 to 1.0%, wt/wt) and carvacrol (0 to 1.0%, wt/wt). Inoculated meat was packaged in bags that were completely immersed in a circulating water bath and held at 55 to 71°C for predetermined lengths of time. The recovery medium was tryptic soy agar supplemented with 0.6% yeast extract and 1% sodium pyruvate. D-values in chicken, determined by linear regression, were 17.45, 2.89, 0.75, and 0.29 min at 55, 60, 65, and 71°C, respectively (z = 9.02°C). Using a survival model for nonlinear survival curves, D-values in chicken ranged from 13.52 min (D(1), major population) and 51.99 min (D(2), heat-resistant subpopulation) at 55°C to 0.15 min (D(1)) and 1.49 min (D(2)) at 71°C. When the Salmonella cocktail was in chicken supplemented with 0.1 to 1.0% trans-cinnamaldehyde or carvacrol, D-values calculated by both approaches were consistently less at all temperatures. This observation suggests that the addition of natural antimicrobials to chicken renders Salmonella serovars more sensitive to the lethal effect of heat. Thermal death times from this study will be beneficial to the food industry in designing hazard analysis and critical control point plans to effectively eliminate Salmonella contamination in chicken products used in this study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4315/0362-028X.JFP-11-307 | DOI Listing |
BMC Biotechnol
January 2025
Faculty of Archaeology, South Valley University, Qena, Egypt.
The increasing demand for sustainable alternatives to conventional antifungal agents has prompted extensive research into the antifungal properties of plant essential oils (EOs). This study investigates the use of EOs mixture (Origanum vulgare, Moringa oleifera, and Cinnamomum verum) for controlling fungal deterioration in wall paintings at the archaeological Youssef Kamal Palace in Nag Hammadi, Egypt. Fungal isolates were collected from deteriorated wall paintings and identified using phenotypic and genotypic analyses.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó 89815-630, SC, Brazil.
The objective of the present study was to determine whether the addition of a blend based on the essential oils of cinnamon, oregano, and eucalyptus to the liquid diets of calves would stimulate the immune system combined with anti-inflammatory action, minimize oxidative responses, and alter the intestinal microbiota, consequently enhancing animal growth. Twenty-four male Holstein calves (approximately five days old) were suckled for 60 days, underwent a weaning process, and were followed up until day 75 of the experiment. The calves were divided into control ( = 12) and phytobiotic ( = 12) groups, receiving commercial milk replacer and pelleted concentrate ad libitum.
View Article and Find Full Text PDFFront Pharmacol
November 2024
Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran.
Trop Biomed
September 2024
Department of Food Science and Nutrition, Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region, China.
Rice is often associated with Bacillus cereus (B. cereus) food poisoning. This review aims to explore the food poisoning activity, antimicrobial resistance, and control measures of B.
View Article and Find Full Text PDFPest Manag Sci
November 2024
China and Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
Background: Citrus huanglongbing (HLB) is a devastating disease in citrus, caused by Candidatus Liberibacter asiaticus (CLas), which primarily resides in the phloem where chemicals cannot effectively reach, posing a significant challenge in controlling HLB. To address these challenges, plant essential oils (EOs), widely used as transdermal enhancers and known for their benefits for plant tissues, were investigated for their potential to enhance chemical permeation.
Results: In this study, seven EOs - eugenol, carvacrol, eucalyptol, geraniol, linalool, cinnamaldehyde, and d-limonene - were evaluated for their potential to enhance chemical penetration into citrus leaves.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!