Lanthanide-based or luminescence resonance energy transfer (LRET) microscopy can be used to sensitively image interactions between reporter-labeled proteins in living mammalian cells. With LRET, luminescent lanthanide complexes are used as donors, conventional fluorophores are used as acceptors, and donor-sensitized acceptor emission occurs at time scales that reflect the long (~ms) lanthanide emission lifetime. These long-lived signals can be separated from short-lifetime (~ns) sample autofluorescence and directly excited acceptor fluorescence by using pulsed light to excite the specimen and by implementing a short delay (>100 ns) before detection, thereby increasing measurement sensitivity. As practical implementation of time-resolved LRET microscopy requires several potentially unfamiliar experimental techniques, we explicitly describe herein methods to label proteins in living mammalian cells with luminescent terbium complexes, image interactions between terbium-labeled proteins and green fluorescent protein fusions, and quantitatively analyze LRET images.

Download full-text PDF

Source
http://dx.doi.org/10.1016/B978-0-12-388448-0.00025-5DOI Listing

Publication Analysis

Top Keywords

luminescence resonance
8
resonance energy
8
energy transfer
8
lret microscopy
8
image interactions
8
proteins living
8
living mammalian
8
mammalian cells
8
time-resolved luminescence
4
transfer imaging
4

Similar Publications

The use of biomass feedstocks for producing high-value-added chemicals is gaining significant attention in the academic community. In this study, near-infrared carbon dots (NIR-CDs) with antimicrobial and bioimaging functions were prepared from branches and leaves using a novel green synthesis approach. The spectral properties of the synthesized NIR-CDs were characterized by ultraviolet-visible (UV-Vis) absorption and fluorescence spectroscopy.

View Article and Find Full Text PDF

All-Fiber Micro-Ring Resonator Based p-Si/n-ITO Heterojunction Electro-Optic Modulator.

Materials (Basel)

January 2025

State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy & Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.

With the rapid advancement of information technology, the data demands in transmission rates, processing speed, and storage capacity have been increasing significantly. However, silicon electro-optic modulators, characterized by their weak electro-optic effect, struggle to balance modulation efficiency and bandwidth. To overcome this limitation, we propose an electro-optic modulator based on an all-fiber micro-ring resonator and a p-Si/n-ITO heterojunction, achieving high modulation efficiency and large bandwidth.

View Article and Find Full Text PDF

Open metal sites are crucial in catalysis. We have used a "loose coordination strategy" (LCS) to preorganize open metal sites in gold cluster catalysts. A gold nanocluster with composition of [Au26(3,4-Me2-Ph-form)9(iPr2-imy)3(Me2S)](BF4)2(iPr2-imy = 1,3-Diisopropylimidazolium tetrafluoroborate, 3,4-Me2-Ph-form = N,N'-Di(3,4-dimethyl-phenyl)formamidine) (Au26) has been obtained by one pot synthesis, i.

View Article and Find Full Text PDF

Analysis of Refractive Index Sensing Properties of a Hybrid Hollow Cylindrical Tetramer Array.

Nanomaterials (Basel)

January 2025

Xinjiang Key Laboratory for Luminescence Minerals and Optical Functional Materials, School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830054, China.

In recent years, metal surface plasmon resonance sensors and dielectric guided-mode resonance sensors have attracted the attention of researchers. Metal sensors are sensitive to environmental disturbances but have high optical losses, while dielectric sensors have low losses but limited sensitivity. To overcome these limitations, hybrid resonance sensors that combine the advantages of metal and dielectric were proposed to achieve a high sensitivity and a high factor at the same time.

View Article and Find Full Text PDF

A fluorescence probe for "switch-on" detection of alkaline phosphatase (ALP) was developed based on Au nanoclusters anchored MnO nanosheets (Au NCs-MnO NSs), which were synthesized using bovine serum albumin (BSA) as template through a simple one-pot approach. In the sensing system, MnO NSs function as both energy acceptors and target identifiers, effectively quenches the fluorescence of Au NCs via fluorescence resonance energy transfer (FRET). The presence of ALP catalyzes the hydrolysis of L-ascorbic acid-2-phosphate (AAP) to ascorbic acid (AA), reducing MnO NSs to Mn and facilitate the fluorescence recovery of Au NCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!