Sympathetic stimulation enhances cardiac contractility by stimulating β-adrenergic signaling and protein kinase A (PKA). Recently, phospholemman (PLM) has emerged as an important PKA substrate capable of regulating cytosolic Ca(2+) transients. However, it remains unclear how PLM contributes to β-adrenergic inotropy. Here we developed a computational model to clarify PLM's role in the β-adrenergic signaling response. Simulating Na(+) and sarcoplasmic reticulum (SR) Ca(2+) clamps, we identify an effect of PLM phosphorylation on SR unloading as the key mechanism by which PLM confers cytosolic Ca(2+) adaptation to long-term β-adrenergic receptor (β-AR) stimulation. Moreover, we show that phospholamban (PLB) opposes and overtakes these actions on SR load, forming a negative feed-forward loop in the β-adrenergic signaling cascade. This network motif dominates the negative feedback conferred by β-AR desensitization and accelerates β-AR-induced inotropy. Model analysis therefore unmasks key actions of PLM phosphorylation during β-adrenergic signaling, indicating that PLM is a critical component of the fight-or-flight response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3327824PMC
http://dx.doi.org/10.1016/j.yjmcc.2011.12.015DOI Listing

Publication Analysis

Top Keywords

β-adrenergic signaling
20
negative feed-forward
8
β-adrenergic
8
β-adrenergic inotropy
8
cytosolic ca2+
8
plm phosphorylation
8
plm
6
signaling
5
phospholemman negative
4
feed-forward regulator
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!