Cognitive decline is one of the earliest hallmarks of both normal and pathological brain aging. Here we used Ercc1 mutant mice, which are impaired in multiple DNA repair systems and consequently show accelerated aging and progressive memory deficits, to identify changes in the levels of hippocampal synaptic proteins that potentially underlie these age-dependent deficits. Aged Ercc1 mutant mice show normal gross hippocampal dendritic morphology and synapse numbers, and Ercc1 mutant hippocampal neurons displayed normal outgrowth and synapse formation in vitro. However, using isobaric tag for relative and absolute quantification (iTRAQ) of hippocampal synaptic proteins at two different ages, postnatal days 28 and 112, we observed a progressive decrease in synaptic ionotropic glutamate receptor levels and increased levels of G-proteins and of cell adhesion proteins. These together may cause long-term changes in synapse function. In addition, we observed a downregulation of mitochondrial proteins and concomitant upregulation of Na,K-ATPase subunits, which might compensate for reduced mitochondrial activity. Thus, our findings show that under conditions of apparent intact neuronal connectivity, levels of specific synaptic proteins are already affected during the early stages of DNA damage-induced aging, which might contribute to age-dependent cognitive decline.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/pr201203m | DOI Listing |
Oncol Res
December 2024
Clinical Oncology Unit, Careggi University Hospital, Florence, 50134, Italy.
Background: Platinum chemotherapy (CT) remains the backbone of systemic therapy for patients with small-cell lung cancer (SCLC). The nucleotide excision repair (NER) pathway plays a central role in the repair of the DNA damage exerted by platinum agents. Alteration in this repair mechanism may affect patients' survival.
View Article and Find Full Text PDFZool Res
July 2024
College of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China. E-mail:
Aging is an inevitable physiological process, often accompanied by age-related bone loss and subsequent bone-related diseases that pose serious health risks. Research on skeletal diseases caused by aging in humans is challenging due to lengthy study durations, difficulties in sampling, regional variability, and substantial investment. Consequently, mice are preferred for such studies due to their similar motor system structure and function to humans, ease of handling and care, low cost, and short generation time.
View Article and Find Full Text PDFMol Imaging Biol
August 2024
Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
Purpose: In this study, we explored the role of apoptosis as a potential biomarker for cardiac failure using functional micro-CT and fluorescence molecular tomography (FMT) imaging techniques in Ercc1 mutant mice. Ercc1 is involved in multiple DNA repair pathways, and its mutations contribute to accelerated aging phenotypes in both humans and mice, due to the accumulation of DNA lesions that impair vital DNA functions. We previously found that systemic mutations and cardiomyocyte-restricted deletion of Ercc1 in mice results in left ventricular (LV) dysfunction at older age.
View Article and Find Full Text PDFLung Cancer
April 2024
Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Team Inflammation, Complement, and Cancer, Université Paris cité, Paris, France; Oncology Thoracic Unit Pulmonology Department, AP-HP, Hôpital Cochin, F-75014 Paris, France. Electronic address:
Background: STK11/LKB1 mutations have been associated with primary resistance to PD-1 axis inhibitors and poor prognosis in advanced KRAS-mutant lung adenocarcinoma. This study aimed to assess the prognostic significance of STK11/LKB1 alterations in localized non-squamous non-small cell lung carcinoma (non-sq NSCLC).
Patients And Methods: Surgical samples from patients undergoing complete resection for stage IIa, IIb, or IIIa (N2 excluded) non-sq NSCLC in the randomized adjuvant phase II trial (NCT00775385 IFCT-1801 TASTE trial) were examined.
J Biomol Struct Dyn
November 2024
Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India.
Lung cancer, the leading cause of death worldwide, arises from an intricate combination of genetic and environmental factors. Genetic variations can influence the chemotherapeutic response of lung cancer patients in DNA repair genes. This study examines the response to platinum-based drugs among lung cancer patients of North Indian descent who possess genetic variations in the MGMT and ERCC1 genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!