Plants need to continuously adjust their transcriptome in response to various stresses that lead to inhibition of photosynthesis and the deprivation of cellular energy. This adjustment is triggered in part by a coordinated re-programming of the energy-associated transcriptome to slow down photosynthesis and activate other energy-promoting gene networks. Therefore, understanding the stress-related transcriptional networks of genes belonging to energy-associated pathways is of major importance for engineering stress tolerance. In a bioinformatics approach developed by our group, termed 'gene coordination', we previously divided genes encoding for enzymes and transcription factors in Arabidopsis thaliana into three clusters, displaying altered coordinated transcriptional behaviors in response to multiple biotic and abiotic stresses (Plant Cell, 23, 2011, 1264). Enrichment analysis indicated further that genes controlling energy-associated metabolism operate as a compound network in response to stress. In the present paper, we describe in detail the network association of genes belonging to six central energy-associated pathways in each of these three clusters described in our previous paper. Our results expose extensive stress-associated intra- and inter-pathway interactions between genes from these pathways, indicating that genes encoding proteins involved in energy-associated metabolism are expressed in a highly coordinated manner. We also provide examples showing that this approach can be further utilized to elucidate candidate genes for stress tolerance and functions of isozymes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-313X.2012.04926.xDOI Listing

Publication Analysis

Top Keywords

gene networks
8
genes belonging
8
energy-associated pathways
8
stress tolerance
8
genes encoding
8
three clusters
8
energy-associated metabolism
8
genes
7
energy-associated
5
deciphering energy-associated
4

Similar Publications

The gene family plays a crucial role in plant growth, development, and responses to biotic and abiotic stresses. , a warm-season turfgrass with exceptional salt tolerance, can be irrigated with seawater. However, the gene family in seashore paspalum remains poorly understood.

View Article and Find Full Text PDF

Quinoa () is an Andean allotetraploid pseudocereal crop with higher protein content and balanced amino acid composition in the seeds. Ammonium (NH), a direct source of organic nitrogen assimilation, mainly transported by specific transmembrane ammonium transporters (), plays important roles in the development, yield, and quality of crops. Many and their functions have been identified in major crops; however, no systematic analyses of and their regulatory networks, which is important to increase the yield and protein accumulation in the seeds of quinoa, have been performed to date.

View Article and Find Full Text PDF

Single-cell and spatial transcriptomics technologies have significantly advanced our understanding of the molecular mechanisms underlying crop biology. This review presents an update on the application of these technologies in crop improvement. The heterogeneity of different cell populations within a tissue plays a crucial role in the coordinated response of an organism to its environment.

View Article and Find Full Text PDF

Background: Obesity and related metabolic disorders have reached epidemic levels, calling for diverse therapeutic strategies. Altering nutrient intake, timing and quantity by intermittent fasting seems to elicit beneficial health effects by modulating endocrine and cell signaling networks. This study explores the impact of cyclic nutrient availability in the form of every-other-day fasting (EODF) on human adipose stem cells (ASCs).

View Article and Find Full Text PDF

The phosphorus (P) availability in soils is influenced by microbes, particularly those containing the gene responsible for phosphate solubilization. The present study investigated the community structure, diversity, and co-occurrence networks of -harboring bacteria in karst and non-karst citrus orchard soils across a planting duration gradient, natural forests, and abandoned land, as well as the soil total P (TP) and available P (AP) contents and enzyme activities. The soil AP contents were lower in the karst regions than in the non-karst regions, while the soil organic carbon (C; SOC), exchangeable calcium, and microbial biomass nitrogen (N) contents; alkaline phosphatase (ALP) and β-Glucuronidase activities; and pH had the opposite trends.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!