Sustained release formulations of a potent antithrombotic drug, cilostazol, in poly-(lactic acid-co-glycolic acid) (PLGA) matrices were created for luminal release from a novel drug-eluting stent utilizing reservoirs (RES TECHNOLOGY™). The crystallinity of cilostazol and the morphology of the cilostazol/polymer matrix in the stent reservoirs were examined by cross-polarized optical microscopy and differential scanning calorimetry. An in vitro method was developed to study release kinetics of various cilostazol formulations and to examine correlation with in vivo release. Formulation parameters such as drug-to-polymer ratio and the use of a polymer barrier on the abluminal surface of the drug/polymer matrix were found to be effective in modulating drug release rate. Cilostazol/PLGA(75/25) in the weight ratio of 50/50 to 70/30 displayed first-order release kinetics for the majority of the drug load. Addition of an abluminal polymer barrier slowed cilostazol release rate when compared to the bidirectional reservoir design. Excellent correlation between cilostazol in vivo release profile from stents in a porcine coronary artery model and that measured in vitro in a modified USP-7 apparatus suggests that the in vitro release system is capable of predicting in vivo release of cilostazol from stent reservoirs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.b.31954 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Chemistry, Faculty of Science, Tarbiat Modares University, Tehran, Iran.
This study explores the development of a sustainable drug delivery system using cellulose nanoparticles (CNPs) derived from potato pulp for the controlled release of phosphoaminopyrazine (PAP), a promising anticancer agent. CNPs were synthesized via nanoprecipitation, and PAP was loaded through in-situ nanoprecipitation, achieving a high loading efficiency of 79.2 %.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Geosciences & Natural Resource Management, Geology, University of Copenhagen, Denmark.
Due to increasing plastic production, the continuous release of primary and secondary nanoplastic particles (NPs, <1 μm) has become an emerging contaminant in terrestrial environments. The fate and transport of NPs in subsurface environments remain poorly understood, largely due to the complex interplay of mineralogical, chemical, biological, and morphological heterogeneity. This study examines interactions between abundant subsurface minerals and NPs under controlled water chemistry (1 mM KCl, pH 5.
View Article and Find Full Text PDFCytotherapy
January 2025
Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan; Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
Background Aims: Hypophosphatemia has been recently recognized adverse event in chimeric antigen receptor (CAR)-T cell therapy, complicating 70-75% of patients. Severe hypophosphatemia can cause cytokine release syndrome (CRS)-like symptoms, such as respiratory and cardiovascular dysfunction. Some reports have described the association between inorganic phosphate (iP) and CRS in patients treated with tisagenlecleucel (tisa-cel), lisocabtagene maraleucel (liso-cel), axicabtagene ciloleucel (axi-cel).
View Article and Find Full Text PDFAdv Mater
January 2025
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China.
Layered transition metal oxides (LTMOs) are attractive cathode candidates for rechargeable secondary batteries because of their high theoretical capacity. Unfortunately, LTMOs suffer from severe capacity attenuation, voltage decay, and sluggish kinetics, resulting from irreversible lattice oxygen evolution and unstable cathode-electrolyte interface. Besides, LTMOs accumulate surface residual alkali species, like hydroxides and carbonates, during synthesis, limiting their practical application.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
Chemicals in plastics raise significant concerns for potential adverse environmental and health impacts. However, dissipation kinetics and fluxes of chemicals from outdoor plastic products remain largely uncharacterized, hindering the accurate assessment of their environmental exposure. This study quantified outdoor dissipation profiles for 20 "priority" chemicals, including sunscreens (benzophenone, benzophenone-3, octyl salicylate, etc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!