The H5N1 HPAI virus has brought heavy loss to poultry industry. Although, there exists limited human-to-human transmission, it poses potential serious risks to public health. HA is responsible for receptor-binding and membrane-fusion and contains the host receptor-binding sites and major epitopes for neutralizing antibodies. To investigate molecular adaption of HPAI H5N1 viruses, we performed a phylogenetic analysis of HA sequences with 240 HPAI virus strains isolated from human. The topology of the tree reveals overall clustering of strains in four major clusters based on geographic location, and shows antigenic diversity of HA of human H5N1 isolates co-circulating in Asia, Africa, and Europe. The four clusters possess distinct features within the cleavage site and glycosylation sites, respectively. We identified six sites apparently evolving under positive selection, five of which persist in the population. Three positively selected sites are found to be located either within or flanking the receptor-binding sites, suggesting that selection at these sites may increase the affinity to human-type receptor. Furthermore, some sites are also associated with glycosylation and antigenic changes. In addition, two sites are found to be selected differentially in the two clusters. The analyses provide us deep insight into the adaptive evolution of human H5N1 viruses, show us several candidate mutations that could cause a pandemic, and suggest that efficiency measures should be taken to deal with potential risks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11262-012-0717-x | DOI Listing |
Nat Commun
December 2024
Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
Clade 2.3.4.
View Article and Find Full Text PDFOpen Vet J
November 2024
Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt.
Background: Highly pathogenic avian influenza (HPAI) (H5N1) has been endemic in Egypt for almost two decades, profoundly impacting both the poultry industry and public health. Egypt stands as a prominent epicenter for HPAI H5N1 outbreaks in Africa, marked by the highest number of positive human cases. Despite continuous governmental efforts, prior research underscored the inadequacy of strategies in controlling the virus spread.
View Article and Find Full Text PDFArch Razi Inst
June 2024
Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
Highly pathogenic avian influenza (HPAI) is a viral disease caused by some H5 and H7 subtypes of influenza virus type A in most species of birds, especially poultry. HPAI viruses are among the most challenging viruses that threaten both human and animal health. Consequently, various strategies, such as the use of vaccines have been proposed to control the disease.
View Article and Find Full Text PDFVirulence
December 2025
Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China.
Several viruses, including influenza A virus (IAV), encode viral factors to hijack cellular RNA biogenesis processes to direct the degradation of host mRNAs, termed "host shutoff." Host shutoff enables viruses to simultaneously reduce antiviral responses and provides preferential access for viral mRNAs to cellular translation machinery. IAV PA-X is one of these factors that selectively shuts off the global host genes.
View Article and Find Full Text PDFEmerg Microbes Infect
December 2024
Host-pathogen interactions (HPI) and Disease Intervention and Prevention (DIP) programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
The host range of HPAIV H5N1 was recently expanded to include ruminants, particularly dairy cattle in the United States (US). Shortly after, human H5N1 infection was reported in a dairy worker in Texas following exposure to infected cattle. Herein, we rescued the cattle-origin influenza A/bovine/Texas/24-029328-02/2024(H5N1, rHPbTX) and A/Texas/37/2024(H5N1, rHPhTX) viruses, identified in dairy cattle and human, respectively, and their low pathogenic forms, rLPbTX and rLPhTX, with monobasic HA cleavage sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!