Single-molecule Surface-Enhanced Raman Scattering (SERS) detection of buckminsterfullerene (C(60)) is achieved by using different isotopologues of the molecule with a distribution around an average isotopic substitution ((12)C → (13)C) of ~30%. The distribution of different isotopologues creates a broad (~20 cm(-1)) average SERS signal within which single-molecule SERS spectra of individual isotopic realizations of the molecule can be distinguished. The SERS enhancement factors for SM-SERS C(60) events are typically in the range of ~10(8), suggesting a limitation imposed by either photobleaching or surface interactions with the (Ag) metallic colloids to reach the highest SERS hot-spots (which can typically have larger maximum enhancements). SM-SERS signals of isotopically substituted C(60) also show broader peaks (FWHM ≈ 4 cm(-1)) than equivalent signals in natural C(60). The latter feature suggests a contribution to the homogeneous broadening coming from isotopic disorder in the molecule; a feature that can only be observed with the ability to detect single-molecule spectra.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2cp23853e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!