Metabolic skeletal disorders associated with impaired bone formation are a major clinical challenge. One approach to treat these defects is to silence bone-formation-inhibitory genes by small interference RNAs (siRNAs) in osteogenic-lineage cells that occupy the niche surrounding the bone-formation surfaces. We developed a targeting system involving dioleoyl trimethylammonium propane (DOTAP)-based cationic liposomes attached to six repetitive sequences of aspartate, serine, serine ((AspSerSer)(6)) for delivering siRNAs specifically to bone-formation surfaces. Using this system, we encapsulated an osteogenic siRNA that targets casein kinase-2 interacting protein-1 (encoded by Plekho1, also known as Plekho1). In vivo systemic delivery of Plekho1 siRNA in rats using our system resulted in the selective enrichment of the siRNAs in osteogenic cells and the subsequent depletion of Plekho1. A bioimaging analysis further showed that this approach markedly promoted bone formation, enhanced the bone micro-architecture and increased the bone mass in both healthy and osteoporotic rats. These results indicate (AspSerSer)(6)-liposome as a promising targeted delivery system for RNA interference-based bone anabolic therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nm.2617 | DOI Listing |
J Orthop Surg Res
January 2025
Research Institute of Orthopedics, The Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
Objective: Osteoporosis is a systemic disease with high morbidity and significant adverse effects. Increasing evidence supports the close relationship between oxidative stress and osteoporosis, suggesting that treatment with antioxidants may be a viable approach. This study evaluated the antioxidant properties of dichotomitin (DH) and its potential protective effects against osteoporosis.
View Article and Find Full Text PDFBMC Musculoskelet Disord
January 2025
Department of Pediatric Orthopaedics, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Rd, Minhang District, Shanghai, 201102, China.
Purpose: Ollier's disease (multiple enchondromatosis) can cause severe lower limb length discrepancy and deformity in children. Osteotomy and limb lengthening with external fixation can correct the lower extremity deformity. There may be lesions in the osteotomy part (OP), and the internal fixation part of the external fixation(FP).
View Article and Find Full Text PDFJ Food Drug Anal
December 2024
School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
Bitter acids (BA) are main component of Humulus lupulus L. (hops). They are known for beer brewing and have various biological and pharmacological properties, especially the bone-protective effect confirmed by our previous in vivo study.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, the First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China.
Aims: Neuron death is caused primarily by apoptosis after spinal cord injury (SCI). Autophagy, as a cellular response, can maintain cellular homeostasis to reduce apoptosis. We aimed to investigate the effect and the mechanism of vimentin knockdown on autophagy and neural recovery after SCI.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China. Electronic address:
In this work, six bovine bone gelatin (type B) samples with varying molecular weight (MW) fractions, comprising α-chains, high- and low-MW fractions, were prepared using ethanol precipitation and pH adjustment. The influence of molecular weight distribution (MWD) on gelatin gel strength was examined, along with the effects of these different MW fractions on microbial transglutaminase (MTGase) cross-linking gelatin. The results showed that, without MTGase treatment, high-MW fractions acted as key fillers in the formation of gelatin gel networks, while α-chains and their aggregates played a central role.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!