Dehydration-responsive element-binding proteins (DREBs)regulate plant responses to environmental stresses. In the current study, transcription of DREB2C, a class 2 Arabidopsis DREB, was induced by a superoxide anion propagator, methyl viologen (MV). The oxidative stress tolerance of DREB2C-overexpressing transgenic plants was significantly greater than that of wild-type plants, as measured by ion leakage and chlorophyll fluorescence under light conditions. The transcriptional activity of several ascorbate peroxidase (APX) genes as well as APX protein activity was induced in DREB2C overexpressors. Additionally, the level of H2O2 in the overexpressors was lower than in wt plants under similar oxidative stress conditions. An electrophoretic mobility shift assay and transient activator reporter assay showed that APX2 expression was regulated by heat shock factor A3 (HsfA3) and that HsfA3 is regulated at the transcriptional level by DREB2C. These results suggest that DREB2C plays an important role in promoting oxidative stress tolerance in Arabidopsis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3887724PMC
http://dx.doi.org/10.1007/s10059-012-2188-2DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
stress tolerance
8
overexpression arabidopsis
4
arabidopsis dehydration-
4
dehydration- responsive
4
responsive element-binding
4
element-binding protein
4
protein confers
4
confers tolerance
4
oxidative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!