Plasmid pRJ9 is a non-self-mobilizable bacteriocinogenic plasmid from Staphylococcus aureus. Despite this feature, DNA sequencing and RT-PCR experiments showed that it presents a Mob region with three genes (mobCAB), transcribed as an operon. In silico analysis of the Mob proteins encoded by pRJ9 showed that they present all the conserved functional features reported until present as being essential for plasmid mobilization. Moreover, they showed a high identity to Mob proteins encoded by mobilizable plasmids from Staphylococcus spp., especially to those encoded by plasmid pRJ6, which presents four mob genes (mobCDAB). A putative oriT region was also found upstream of the pRJ9 mob operon. pRJ9 could only be successfully mobilized by pGO1 when pRJ6 was present in the same strain. Further experiments showed that the pRJ9 oriT can be recognized by the pRJ6 Mob proteins, confirming its functionality. As pRJ9 does not possess a mobD gene while pRJ6 does, the absence of this gene was believed to be responsible for its lack of mobilization. However, conjugation experiments with a donor strain carrying also mobD cloned into an S. aureus vector showed that pRJ9 does not become mobilized even in the presence of the protein MobD encoded by pRJ6. Therefore, the reasons for pRJ9 failure to be mobilized are presently unknown.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000335356 | DOI Listing |
Mob DNA
November 2024
Herbarium and Department of Botany, Charles University, Benátská 2, CZ-12801, Prague, Czech Republic.
Mob DNA
October 2024
Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA.
Recent studies have suggested that Transposable Elements (TEs) residing in introns frequently splice into and alter primary gene-coding transcripts. To re-examine the exonization frequency of TEs into protein-coding gene transcripts, we re-analyzed a Drosophila neuron circadian rhythm RNAseq dataset and a deep long RNA fly midbrain RNAseq dataset using our Transposon Insertion and Depletion Analyzer (TIDAL) program. Our TIDAL results were able to predict several TE insertions from RNAseq data that were consistent with previous published studies.
View Article and Find Full Text PDFMob DNA
October 2024
Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA.
Transposable elements (TEs) are often expressed at higher levels in tumor cells than normal cells, implicating these genomic regions as an untapped pool of tumor-associated antigens. In ovarian cancer (OC), protein from the TE ERV-K is frequently expressed by tumor cells. Here we determined whether the targeting of previously identified epitope in the envelope gene (env) of ERV-K resulted in target antigen specificity against cancer cells.
View Article and Find Full Text PDFN Engl J Med
January 2025
From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.).
Background: Previous results from this trial showed longer overall survival after treatment with nivolumab plus ipilimumab or with nivolumab monotherapy than with ipilimumab monotherapy in patients with advanced melanoma. Given that patients with advanced melanoma are living longer than 7.5 years, longer-term data were needed to address new clinically relevant questions.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
August 2024
Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, 200240 Shanghai, China.
Background: Bone tissue engineering offers a new approach for the treatment of bone defects, with angiogenesis being critical to the survival and development of tissue-engineered bone. Mineralized osteoblasts (MOBs) have been reported to promote vascular formation by endothelial cells (ECs) through the secretion of exosomes containing a variety of angiogenic factors. The aim of the present study was to investigate the effect of miR-423-5p contained within exosomes derived from MOBs (MOB-Exos) on EC angiogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!