Objective: To assess the feasibility of quantitative myocardial perfusion imaging (MPI) in acute myocardial infarction (AMI), using multi-row detector CT (MDCT) with a model-based deconvolution method. DESIGN, SETTING, PATIENTS AND INTERVENTIONS: Fifteen normal subjects with normal coronary arteries and 26 patients with AMI after reperfusion therapy underwent MPI with MDCT. Perfusion parameters: tissue blood flow (TBF), tissue blood volume (TBV) and mean transit time (MTT) were obtained and compared with clinical parameters, angiography and single-photon emission CT (SPECT) data. Furthermore, the MPI data were compared with data from myocardial magnetic resonance (MR) in 10 subjects.
Results: The TBF and TBV of infarcted myocardium were significantly lower than those of non-infarcted areas (TBF, 51.96±19.42 vs 108.84±13.29 ml/100 g/min, p<0.01; TBV, 4.47±2.23 vs 9.79±2.58 ml/100 g, p<0.01). The MTT of infarcted areas did not differ from that of non-infarcted areas. The defect areas on TBV colour maps were significantly associated with peak creatine kinase level, QRS score and SPECT defect score. The ratio of TBF or TBV in the epicardial to endocardial side was significantly higher in infarct myocardium with good collateral circulation than in myocardium with poor/no collateral circulation (p<0.01 for both). The TBF measurements with CT- and MR-MPI were in good agreement by linear regression analysis (R=0.55, p<0.01).
Conclusions: This study demonstrated that MDCT perfusion imaging with deconvolution analysis could quantitatively detect myocardial perfusion abnormalities in patients with AMI and may provide the basis for the non-invasive and quantitative assessment of myocardial infarction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1136/heartjnl-2011-300915 | DOI Listing |
J Exp Biol
January 2025
Hannover Medical School, Institute of Functional and Applied Anatomy, 30625 Hanover, Germany.
Small mammals have a higher heart rate and, relative to body mass (Mb), a higher metabolic rate than large mammals. In contrast, heart weight and stroke volume scale linearly with Mb. With mitochondria filling approximately 50% of a shrew cardiomyocyte - space unavailable for myofibrils - it is unclear how small mammals generate enough contractile force to pump blood into circulation.
View Article and Find Full Text PDFInt J Cardiovasc Imaging
January 2025
Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
The initial evaluation of stenosis during coronary angiography is typically performed by visual assessment. Visual assessment has limited accuracy compared to fractional flow reserve and quantitative coronary angiography, which are more time-consuming and costly. Applying deep learning might yield a faster and more accurate stenosis assessment.
View Article and Find Full Text PDFJ Cardiovasc Comput Tomogr
January 2025
British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, United Kingdom; Edinburgh Imaging, University of Edinburgh, United Kingdom. Electronic address:
Background: Diabetes mellitus is an established cardiovascular risk factor. We assessed the impact of diabetes mellitus on quantitative plaque and long-term outcomes in patients with and without diabetes mellitus in the Scottish COmputed Tomography of the HEART (SCOT-HEART) trial.
Methods: Coronary artery calcium (CAC) was assessed on non-contrast computed tomography (CT).
Aim: To study the associations between risk factors, clinical characteristics, severity of brachiocephalic artery (BCA) atherosclerosis and severity of coronary artery (CA) disease in patients with acute coronary syndrome (ACS).
Material And Methods: The study included patients with any type of ACS and obstructive coronary artery disease confirmed by coronary angiography. A quantitative analysis of coronary angiography data was performed with an assessment of the number of CAs with significant stenosis and calculation of the SYNTAX score.
A new and non-invasive technology of left ventricular pressure-strain loop (LV-PSL) has recently been used to provide information on myocardial work (MW) and identify subtle modifications in cardiac function. This study aimed to use LV-PSL for early identification of changes in LV structure and MW in patients with end-stage renal disease (ESRD). Methods: Seventy-two patients with ESRD were divided into two groups based on undergoing maintenance hemodialysis (MHD), namely the dialysis group (ESRD-D group) and non-dialysis group (ESRD-ND group).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!