Background & Aims: Macrophages mediate the epithelial response to Helicobacter pylori and are involved in the development of gastritis. Sonic Hedgehog (Shh) regulates gastric epithelial differentiation and function, but little is known about its immunoregulatory role in the stomach. We investigated whether gastric Shh acts as a macrophage chemoattractant during the innate immune response to H pylori infection.
Methods: Mice with parietal cell-specific deletion of Shh (PC-Shh(KO)) and control mice were infected with H pylori. Levels of gastric Shh, cytokines, and chemokines were assayed by quantitative reverse-transcriptase polymerase chain reaction or by a Luminex-based multiplex assay 2, 7, or 180 days after infection. Circulating concentrations of Shh were measured by enzyme-linked immunosorbent assay. Bone marrow chimera experiments were performed with mice that have myeloid cell-specific deletion of the Hedgehog signal transduction protein Smoothened (LysMCre/Smo(KO)). Macrophage recruitment was measured in gastric tissue and peripheral blood by fluorescence-activated cell sorting analysis.
Results: Control mice infected with H pylori for 6 months developed an inflammatory response characterized by infiltration of CD4(+) T cells and increased levels of interferon gamma and interleukin 1β in the stomach. PC-Shh(KO) mice did not develop gastritis, even after 6 months of infection with H pylori. Control mice had increased concentrations of Shh, accompanied by the recruitment of CD11b(+)F4/80(+)Ly6C(high) macrophages 2 days after infection. Control mice that received bone marrow transplants from control mice had an influx of macrophages to the gastric mucosa in response to H pylori infection; this was not observed in H pylori-infected control mice that received bone marrow transplants from LysMCre/Smo(KO) mice.
Conclusions: H pylori induces release of Shh from the stomach; Shh acts as a macrophage chemoattractant during initiation of gastritis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3335966 | PMC |
http://dx.doi.org/10.1053/j.gastro.2012.01.029 | DOI Listing |
Am J Physiol Heart Circ Physiol
January 2025
Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, 355 Campus Ring Road, Saint John, New Brunswick, E2L 4L5, Canada.
Lipid phosphate phosphatase 3 (LPP3) is a membrane-bound enzyme that hydrolyzes lipid phosphates including the bioactive lipid, lysophosphatidic acid (LPA). Elevated circulating LPA production and cellular LPA signaling are implicated in obesity-induced metabolic and cardiac dysfunction. Deletion of LPP3 in the cardiomyocyte increases circulating LPA levels and causes heart failure and mitochondrial dysfunction in mice.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China.
Photodynamic therapy holds great potentials in cancer treatment, yet its effectiveness in hypoxic solid tumor is limited by the oxygen-dependence and insufficient oxidative potential of conventional type II reactive oxygen species (ROS). Herein, the study reports a supramolecular photosensitizer, BSA@TPE-BT-SCT NPs, through encapsulating aggregation-enhanced emission photosensitizer by bovine serum albumin (BSA) to significantly enhance ROS, particularly less oxygen-dependent type I ROS for photodynamic immunotherapy. The abundant type I ROS generated by BSA@TPE-BT-SCT NPs induce multiple forms of programmed cell death, including apoptosis, pyroptosis, and ferroptosis.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China.
Background: The determinants of differences in host infectivity among Cryptosporidium species and subtypes are poorly understood. Results from recent comparative genomic studies suggest that gains and losses of multicopy subtelomeric genes encoding insulinase-like proteases (INS-19 and INS-20 in Cryptosporidium parvum and their orthologs in closely related species) may potentially contribute to these differences.
Methodology/principal Findings: In this study, we investigated the expression and biological function of the INS-19 and INS-20 of C.
Invest Radiol
January 2025
From the Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany (D.B.M., J.O.K., J.B., A.K., J.M., J.L.H., C.R., M.T., B.H., M.R.M.); Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany (D.B.M., J.O.K., J.B., A.K., L.C.A., M.R.M.); Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany (J.O.K.); Division 1.5 Protein Analysis, Federal Institute for Materials Research and Testing, Berlin, Germany (J.O.K., M.G.W.); Department of Biology, Chemistry, and Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany (A.K.); Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany (J.L.H.); Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany (C.V., P.N., U.K.); Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany (A.L.); DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany (A.L.); and Division of Cardiology, Massachusetts General Hospital, Harvard University, Boston, MA (W.C.P.).
Introduction: Atherosclerosis is the underlying cause of multiple cardiovascular pathologies. The present-day clinical imaging modalities do not offer sufficient information on plaque composition or rupture risk. A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) is a strongly upregulated proteoglycan-cleaving enzyme that is specific to cardiovascular diseases, inter alia, atherosclerosis.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry, Wuhan University, Wuhan 430072, China.
Flow injection mass spectrometry (FI-MS) is widely employed for high-throughput metabolome analysis, yet the absence of prior separation leads to significant matrix effects, thereby limiting the metabolome coverage. In this study, we introduce a novel photosensitive MS probe, iTASO-ONH, integrated with FI-MS to establish a high-throughput strategy for submetabolome analyses. The iTASO probe features a conjugated-imino sulfonate moiety for efficient photolysis under 365 nm irradiation and a reactive group for selective metabolite labeling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!