Local translation of dendritic mRNAs is a key aspect of dendrite and spine morphogenesis and synaptic plasticity, two phenomena generally compromised in intellectual disability disorders. Mammalian target of rapamycin (mTOR) is a protein kinase involved in a plethora of functions including dendritogenesis, plasticity and the regulation of local translation. Hence, this kinase may well be implicated in intellectual disability. Hyperactivation of mTOR has been recently reported in mouse models of Fragile X and tuberous sclerosis, two important causes of intellectual disability. Moreover, local dendritic translation seems to be increased in Fragile X syndrome. Recent findings show that the mTOR pathway is also deregulated in murine models of Rett's syndrome and Down's syndrome. As in Fragile X, local dendritic translation seems to be abnormally active in Down's syndrome mice, while rapamycin, a Food and Drug Administration-approved mTOR inhibitor, restores normal rates of translation. Rapamycin administration in tuberous sclerosis mice rescues deficits in behavior and synaptic plasticity. Indeed, mTOR-dependent deregulation of local translation may be a common trait in different intellectual deficiencies, suggesting that mTOR inhibitors may have significant therapeutic potential for the treatment of diverse forms of cognitive impairment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pneurobio.2012.01.005 | DOI Listing |
Cell Rep
January 2025
Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA. Electronic address:
The tRNA methyltransferase 1 (TRMT1) enzyme catalyzes the N2,N2-dimethylguanosine (m2,2G) modification in tRNAs. Intriguingly, vertebrates encode an additional tRNA methyltransferase 1-like (TRMT1L) paralog. Here, we use a comprehensive tRNA sequencing approach to decipher targets of human TRMT1 and TRMT1L.
View Article and Find Full Text PDFHum Genet
January 2025
Department of Biomedical Sciences, University of Padova, Padova, Italy.
The Genetics of Neurodevelopmental Disorders Lab in Padua provided a new intellectual disability (ID) Panel challenge for computational methods to predict patient phenotypes and their causal variants in the context of the Critical Assessment of the Genome Interpretation, 6th edition (CAGI6). Eight research teams submitted a total of 30 models to predict phenotypes based on the sequences of 74 genes (VCF format) in 415 pediatric patients affected by Neurodevelopmental Disorders (NDDs). NDDs are clinically and genetically heterogeneous conditions, with onset in infant age.
View Article and Find Full Text PDFBackground: Down Syndrome (DS) is the most common genetic form of intellectual disability. In recent years, there has been a significant increase in the life expectancy of individuals with DS, currently reaching the age of 60 or over. However, it has been observed that as of age 40, these individuals experience higher risk of developing dementia, and almost all of them exhibit histopathological characteristics of Alzheimer's disease (AD) in their brains.
View Article and Find Full Text PDFBackground: People with Down syndrome (DS) are genetically at-risk for Alzheimer's disease (AD). The age of symptomatic AD in DS varies (late-40s-70s). Lifestyle factors are theorized to explain some of this variability.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; NYU Langone Health, New York, NY, USA.
Background: Clinical and preclinical evidence suggest that abnormal electrical activity strongly impacts outcomes in Alzheimer's disease (AD). Indeed, AD patients with interictal spikes (IIS) show faster cognitive decline than those without IIS. Furthermore, seizures in patients with AD have been suggested to accelerate disease progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!