Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Investigating the role of proteoglycans associated to cell membranes is fundamental to comprehend biochemical process that occurs at the level of membrane surfaces. In this paper, we exploit syndecan-4, a heparan sulfate proteoglycan obtained from cell cultures, in lipid Langmuir monolayers at the air-water interface. The monolayer served as a model for half a membrane, and the molecular interactions involved could be evaluated with tensiometry and vibrational spectroscopy techniques. Polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS) employed in a constant surface pressure regime showed that the main chemical groups for syndecan-4 were present at the air-water interface. Subsequent monolayer decompression and compression showed surface pressure-area isotherms with a large expansion for the lipid monolayers interacting with the cell culture reported to over-express syndecan-4, which was also an indication that the proteoglycan was inserted in the lipid monolayer. The introduction of biological molecules with affinity for syndecam-4, such as growth factors, which present a key role in biochemical process of cell signaling, changed the surface properties of the hybrid film, leading to a model, by which the growth factor binds to the sulfate groups present in the heparan sulfate chains. The polypeptide moiety of syndecan-4 responds to this interaction changing its conformation, which leads to lipid film relaxation and further monolayer condensation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamem.2012.01.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!