Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Techniques such as solvent extraction, incineration, chemical dehalogenation, and biodegradation have been investigated for the degradation of hazardous organic compounds. We found ultrasound to be an attractive technology for the degradation of hazardous organic compounds in water. However, the effects of ultrasonic frequency on degradation rate constants were not investigated quantitatively. In this study, the degradation process of a model for hazardous organic compound methylene blue was investigated using ultrasonic irradiation. The study focused on the effects of ultrasonic frequency and ultrasonic power on the degradation rate constant. The apparent degradation rate constants were estimated based on time dependence of methylene blue concentration assuming pseudo-first-order kinetics for the decomposition. A linear relationship between the apparent degradation rate constant and ultrasonic power was identified. In addition, the apparent degradation rate constants at frequencies of 127 and 490 kHz were much larger than those at 22.8 kHz. A relationship between the apparent degradation rate constant and the sonochemical efficiency value (SE value) was also found. Based on these results, a simple model for estimating the apparent degradation rate constant of methylene blue based on the ultrasonic power and the SE value is proposed in this study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultsonch.2012.01.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!