Genotoxicity of alkene epoxides in human peripheral blood mononuclear cells and HL60 leukaemia cells evaluated with the comet assay.

Mutat Res

Dipartimento di Specialità Medico-Chirurgiche e Sanità Pubblica, Sezione di Epidemiologia Molecolare e Igiene Ambientale, Università di Perugia, via del Giochetto, 06126 Perugia, Italy.

Published: August 2012

Volatile organic compounds (VOCs) exert their carcinogenic activity through the production of epoxide metabolites. Because of their high reactivity some epoxides are also produced in the chemical industry for the synthesis of other compounds. Therefore, human exposure to VOCs epoxides does occur and may be an important human health concern. In this study, the in vitro genotoxic potential of epoxides originating from 1,3-butadiene (3,4-epoxy-1-butene: EB; 1,2:3,4-diepoxybutane: DEB), isoprene (3,4-epoxy-2-methyl-1-butene: IO), styrene (styrene-7,8-oxide: SO), propylene (propylene oxide: PO) and 1-butene (1,2-epoxy-butane: BO) in human peripheral blood mononuclear cells (PBMCs) and promyelocytic leukaemia cells (HL60) was measured with the comet assay (single-cell gel electrophoresis, SCGE). The effect of inclusion of foetal calf serum (FCS, 5%) in the cell-culture medium and different durations of exposure (2h, 24h) were also investigated. All epoxides tested produced DNA damage in a concentration range that did not reduce cell viability. HL60 cells were more resistant than PBMCs to the DNA damage induced by the different epoxides. With the exception of IO, the treatment for 24h resulted in an increase of DNA damage. FCS slightly protected PBMCs from the genotoxic effects induced by IO and BO, whilst no such effect was noted for the other compounds. Overall, the dose-dependent effects that were seen allowed us to define a genotoxicity scale for the different epoxides as follows: SO>EB>DEB>IO>PO>BO, which is in partial agreement with the International Agency for Research on Cancer (IARC) classification of the carcinogenic hazards.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mrgentox.2012.01.004DOI Listing

Publication Analysis

Top Keywords

dna damage
12
human peripheral
8
peripheral blood
8
blood mononuclear
8
mononuclear cells
8
cells hl60
8
leukaemia cells
8
comet assay
8
epoxides
7
cells
5

Similar Publications

In vitro fertilization (IVF) is a widely used assisted reproductive technology to achieve a successful pregnancy. However, the acquisition of oxidative stress in embryo in vitro culture impairs its competence. Here, we demonstrated that a nuclear coding gene, methyltransferase-like protein 7A (METTL7A), improves the developmental potential of bovine embryos.

View Article and Find Full Text PDF

Increased cardiac macrophages in -deficient hearts: revealing a potential role for macrophage in responding to embryonic myocardial abnormalities.

Front Genet

January 2025

Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Macrophages are known to support cardiac development and homeostasis, contributing to tissue remodeling and repair in the adult heart. However, it remains unclear whether embryonic macrophages also respond to abnormalities in the developing heart. Previously, we reported that the structural protein Sorbs2 promotes the development of the second heart field, with its deficiency resulting in atrial septal defects (ASD).

View Article and Find Full Text PDF

This study evaluates the effects of hydroxytyrosol (HT), a component of olive oil, on mammographic breast density reduction. We explored effects of HT on Wnt -catenin and other pathways involved in cancer stem cell renewal, DNA repair, cell proliferation, and differentiation. Twenty-five milligrams per day oral dose of HT was given for 12 months in pre- and postmenopausal women at increased risk of breast cancer.

View Article and Find Full Text PDF

is a Gram-negative oncobacterium that is associated with colorectal cancer. The molecular mechanisms utilized by to promote colorectal tumor development have largely focused on adhesin-mediated binding to the tumor tissue and on the pro-inflammatory capacity of . However, the exact manner in which promotes inflammation in the tumor microenvironment and subsequent tumor promotion remains underexplored.

View Article and Find Full Text PDF

Chloroplast State Transitions Modulate Nuclear Genome Stability via Cytokinin Signaling in Arabidopsis.

Mol Plant

January 2025

Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 People's Republic of China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, People's Republic of China. Electronic address:

Activities of the chloroplasts and nucleus are coordinated by retrograde signaling, which has crucial roles in plant development and environmental adaptation. However, the connection between chloroplast status and nuclear genome stability is not well understood. Chloroplast state transitions allow the plant to balance the absorption capacity of the photosystems in an environment in which the light quality was changing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!