A major clinical problem regarding antitumoral treatment with DNA cross-linking agents such as cisplatin (Cisp), mechlorethamine (HN2) or its derivative melphalan (MLP) is intrinsic or acquired resistance to therapy, which frequently results from a resistance to apoptosis induction. In this study, aimed to identify novel sensitizing targets to DNA cross-linker-induced cell death, we demonstrated that MLP, Cisp and HN2 induce mitochondrial permeability transition pore (PTP)-mediated apoptosis in cervical and colon carcinoma cells. This apoptotic pathway is characterized by dissipation of the mitochondrial membrane potential, production of ROS, mitochondrial translocation of Bax, release of apoptogenic factors, caspase activation and nuclear alterations. The opening of PTP and subsequent apoptosis was reduced in Bax deficient cells and in cells with elevated Bcl-2 level, but not in cells invalidated for Bak. We further showed that, among the pro-apoptotic PTP regulators tested (VDAC1, creatine kinase, ANT1 and ANT3), exogenous overexpression of VDAC1 was the most effective in enhancing Cisp- and MLP-induced apoptosis. In addition, pharmacologically induced up-regulation of VDAC1 by the chemotherapeutic agent arsenic trioxide (As(2)O(3)) greatly sensitized HeLa cells to Cisp and MLP treatment. These data indicate that increased expression of VDAC1 appears as a promising strategy to improve DNA cross-linker-induced chemotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2012.01.017 | DOI Listing |
Inflamm Regen
January 2025
Oncology & Immunology Unit, Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan.
Idiopathic inflammatory myopathies (IIMs) are a group of autoimmune disorders characterized by immune cell infiltration of muscle tissue accompanied by inflammation. Treatment of IIMs is challenging, with few effective therapeutic options due to the lack of appropriate models that successfully recapitulate the features of IIMs observed in humans. In the present study, we demonstrate that immunodeficient mice transplanted with human peripheral blood mononuclear cells (hPBMCs) exhibit the key pathologic features of myositis observed in humans and develop graft-versus-host disease.
View Article and Find Full Text PDFLab Anim Res
January 2025
Anatomy Department, Faculty of Basic Medical Sciences, Alex Ekwueme, Federal University, Ndufu-Alike, Ebonyi State, Nigeria.
Background: The Microtubules-associated protein tau (MAPT), alpha-synuclein (SNCA), and leucine zipper tumor suppressor 3 (LZTS3) genes are implicated in neurodegeneration and tumor suppression, respectively. This study investigated the regulatory roles of eugenol on paraquat-altered genes.
Results: Forty male Wistar rats divided into five groups of eight rats were used.
Alzheimers Res Ther
January 2025
Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy.
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder with both genetic and environmental factors contributing to its pathogenesis. While early-onset AD has well-established genetic determinants, the genetic basis for late-onset AD remains less clear. This study investigates a large Italian family with late-onset autosomal dominant AD, identifying a novel rare missense variant in GRIN2C gene associated with the disease, and evaluates the functional impact of this variant.
View Article and Find Full Text PDFEur J Med Res
January 2025
Department of Nephrology, Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), No.1882, Zhonghuan North Road, Jiaxing, 314000, Zhejiang, China.
Background: Dysfunction in podocyte mitophagy has been identified as a contributing factor to the onset and progression of diabetic nephropathy (DN), and BMAL1 plays an important role in the regulation of mitophagy. Thus, this study intended to examine the impact of BMAL1 on podocyte mitophagy in DN and elucidate its underlying mechanisms.
Materials And Methods: High D-glucose (HG)-treated MPC5 cells was used as a podocyte injury model for investigating the potential roles of BMAL1 in DN.
Genome Med
January 2025
Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK.
Background: Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and immunofluorescence markers are required. However, emerging scRNA-seq datasets have enabled an increased understanding of senescent cell heterogeneity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!