During his long career as a principal investigator and educator, Eli Sercarz trained over 100 scientists. He is best known for developing hen egg white lysozyme (HEL) as a model antigen for immunologic studies. Working in his model system Eli furthered our understanding of antigen processing and immunologic tolerance. His work established important concepts of how the immune system recognizes antigenic determinants processed from whole protein antigens; specifically he developed the concepts of immunodominance and crypticity. Later in his career he focused more on autoimmunity using a variety of established animal models to develop theories on how T cells can circumvent tolerance induction and how an autoreactive immune response can evolve over time. His theory of "determinant spreading" is one of the cornerstones of our modern understanding of autoimmunity. This review covers Eli's entire scientific career outlining his many seminal discoveries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellimm.2011.12.009 | DOI Listing |
J Transl Med
July 2011
Laboratory of Vaccine Research, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA.
Background: Non Obese Diabetic mice lacking B cells (NOD.Igμ(null) mice) do not develop diabetes despite their susceptible background. Upon reconstitution of B cells using a chimera approach, animals start developing diabetes at 20 weeks of age.
View Article and Find Full Text PDFDiabetes
June 2011
Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA.
Objective: Immunotherapy using peptides from the β-cell antigen GAD65 can preserve glucose homeostasis in diabetes-prone NOD mice; however, the precise mechanisms that arrest islet-reactive T cells remain unresolved. Our previous work revealed that a dominant GAD65 epitope contained two overlapping I-A(g7)-restricted determinants, 524-538 and 530-543, with the former associated with amelioration of hyperglycemia. Here, we sought to discover whether p524-538-specific T cells could directly regulate islet-reactive T cells.
View Article and Find Full Text PDFJ Transl Med
October 2010
Division of Immune Regulation, Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, USA.
Background: Tumor immune responses are first generated and metastases often begin in tumor sentinel lymph nodes (TSLN). Therefore, it is important to promote tumor immunity within this microenvironment. Mifepristone (RU486) treatment can interfere with cortisol signaling that can lead to suppression of tumor immunity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2010
La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA.
To determine the role that competition plays in a molecular mimic's capacity to induce autoimmunity, we studied the ability of naïve encephalitogenic T cells to expand in response to agonist altered peptide ligands (APLs), some capable of stimulating both self-directed and exclusively APL-specific T cells. Our results show that although the APLs capable of stimulating exclusively APL-specific T cells are able to expand encephalitogenic T cells in vitro, the encephalitogenic repertoire is effectively outcompeted in vivo when the APL is used as the priming immunogen. Competition as a mechanism was supported by: (i) the demonstration of a population of exclusively APL-specific T cells, (ii) an experiment in which an encephalitogenic T cell population was successfully outcompeted by adoptively transferred naïve T cells, and (iii) demonstrating that the elimination of competing T cells bestowed an APL with the ability to expand naïve encephalitogenic T cells in vivo.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2009
Division of Immune Regulation, Torrey Pines Institute for Molecular Studies, La Jolla, California 92121, USA.
Alterations in presenting self determinants to T cells may depend upon the availability of sites on the molecule adjacent to known determinants to different processing enzymes, or, at the level of amino acid sequence or conformation of a single determinant. We have studied three possible ways that could modulate the processing and presentation of T cell determinants of a diabetes autoantigen, glutamic acid decarboxylase (GAD) 65, which could contribute to induction of GAD65-specific regulatory versus pathogenic T cells in type 1 diabetes (T1D): 1) enhanced presentation of subdominant/cryptic determinants to T cells that have not been well-tolerized, which may activate T cells of high affinity and high aggressiveness; 2) trimming or truncating flanking residues which may otherwise provide needed binding energy to determinants that activate regulatory cells, thus releasing autoaggressive T cells from suppression; 3) biochemical or chemical modifications of self antigens in an inflammatory environment or within activated antigen presenting cells (APC) which may convert a previously regulatory antigen or determinant into a disease-causing one that activates autoreactive T cells at a higher affinity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!