Telomere dysfunctional environment induces loss of quiescence and inherent impairments of hematopoietic stem cell function.

Aging Cell

Institute of Molecular Medicine and Max-Planck-Research Group on Stem Cell Aging, University of Ulm, 89081 Ulm, Germany.

Published: June 2012

Previous studies have shown that telomere dysfunction induces alteration in the systemic (circulatory) environment impairing the differentiation of hematopoietic stem cells (HSCs) but these defects can be reverted by re-exposing HSCs to an environment with functional telomeres. In contrast, HSC intrinsic telomere dysfunction induces permanent and irreversible limitations in the repopulation capacity partially depending on the induction of checkpoints such as cell cycle arrest, differentiation, or apoptosis. It is currently unknown whether telomere dysfunctional environment can induce irreversible, cell intrinsic defects impairing the function of HSCs. Here, we analyzed the functional reserves of murine, wild-type HSCs with intact telomeres that were transiently exposed to a telomere dysfunctional environment (late generation telomerase knockout mice) or to an environment with functional telomeres (wild-type mice). The study shows that the telomere dysfunctional environment leads to irreversible impairments in the repopulation capacity of wild-type HSCs. The telomere dysfunctional environment impaired the maintenance of HSC quiescent. Moreover, the study shows that alterations in the systemic (circulatory) environment rather than the bone stromal niche induce loss of stem cell quiescence and irreversible deficiencies of HSCs exposed to a telomere dysfunctional environment.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1474-9726.2012.00802.xDOI Listing

Publication Analysis

Top Keywords

telomere dysfunctional
24
dysfunctional environment
24
environment
10
telomere
8
hematopoietic stem
8
stem cell
8
telomere dysfunction
8
dysfunction induces
8
systemic circulatory
8
circulatory environment
8

Similar Publications

The aging process is a multifactorial biological phenomenon starting at birth and persisting throughout life, characterized by a decline in physiological functions and adaptability. This decline results in the diminished capacity of aging organisms to respond to environmental changes and stressors, leading to reduced efficiency in metabolic, immune, and hormonal functions. As behavioral flexibility wanes, older individuals face longer recovery times and increased vulnerability to diseases.

View Article and Find Full Text PDF

Mesenchymal stem/stromal cells (MSCs) are involved in the maintenance and regeneration of a large variety of tissues due to their stemness and multi-lineage differentiation capability. Harnessing these advantageous features, a flurry of clinical trials have focused on MSCs to treat different pathologies, but only few protocols have received regulatory approval so far. Among the various causes hindering MSCs' efficacy is the emergence of cellular senescence, which has been correlated with specific characteristics, such as morphological and epigenetic alterations, DNA damage, ROS production, mitochondrial dysfunction, telomere shortening, non-coding RNAs, loss of proteostasis, and a peculiar senescence-associated secretory phenotype.

View Article and Find Full Text PDF

Telomerase and telomeres are crucial in cancer cell immortalization, making them key targets for anticancer therapies. Currently, 6-thio-dG (THIO) combined with the anti-PD-1 inhibitor Cemiplimab is under phase II clinical investigation (NCT05208944) in NSCLC patients resistant to prior immunotherapies. This study presents the design, synthesis, and evaluation of novel bimodular conjugate molecules combining telomere-targeting nucleoside analogs and phosphatidyl diglyceride groups.

View Article and Find Full Text PDF

Chronic stress is associated with a higher risk for carcinogenesis as well as age-related diseases and immune dysfunction. There is evidence showing that psychological stress can contribute to premature immunosenescence. Therefore, the question arose whether chronic exposure to catecholamine could drive immune cells into senescence.

View Article and Find Full Text PDF

The aging process significantly impacts lung physiology and is a major risk factor for chronic respiratory diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), asthma, and non-IPF interstitial lung fibrosis. This narrative clinical review explores the molecular and biochemical hallmarks of aging, such as oxidative stress, telomere attrition, genomic instability, epigenetic modifications, proteostasis loss, and impaired macroautophagy, and their roles in lung senescence. Central to this process are senescent cells, which, through the senescence-associated secretory phenotype (SASP), contribute to chronic inflammation and tissue dysfunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!