Metallic materials are well known to strongly interact with electromagnetic fields. While biological effects of such field have been extensively studied, only few works dealt with the interactions of electromagnetic waves with passive metallic device implanted in biological system. Hence only several numerical and phantom simulation studies were focusing on this aspect, whereas no in situ anatomic experiment has been previously performed. In this study the effect of electromagnetic waves on eight different orthopaedic medical devices (six plates from 55 to 318mm length, a total knee and a total hip prosthesis) were explored on six human cadavers. To mimic a random environmental exposure resulting from the most common frequencies band used in domestic environment and medical applications (TV and radio broadcasting, cell phone communication, MRI, diathermy treatment), a multifrequency generator emitting in VHF, UHF, GSM and GCS frequency bands was used. The different medical devices were exposed to an electromagnetic field at 50W/m(2) and 100W/m(2). After 6min exposure, the temperature was measured on three points close to each medical device, and the induced currents were estimated. No significant temperature increase (<0.2°C) was finally detected; beside, a slight induced tension (up to 1.1V) was recorded but would appear too low to induce any biological side effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.otsr.2011.08.012 | DOI Listing |
Clin Neurophysiol
January 2025
Institute for Research and Development on Bioengineering and Bioinformatics (IBB), CONICET-UNER, Oro Verde, Argentina; Center for Rehabilitation Engineering and Neuromuscular and Sensory Research (CIRINS), National University of Entre Ríos (UNER), Oro Verde, Argentina. Electronic address:
Objective: To describe the cortical evoked potentials in response to radiofrequency stimulation (RFEPs) in human volunteers.
Methods: Seventeen healthy volunteers participated in an experimental session in which radiofrequency (RF) and electrical (ES) stimulation were applied to the dorsum of the hands and feet. EEG was recorded to evaluate evoked responses for each stimulus modality and stimulation site.
Sensors (Basel)
January 2025
Department of Electrical Engineering, Southeast University, Nanjing 210096, China.
The electromagnetic characteristics of a single-phase permanent magnet linear oscillation actuator are analyzed by the finite element method. Firstly, the basic structure and operation principle of the linear oscillation actuator are introduced. The internal stator slot and arc tooth are used to reduce the detent force.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania.
Cartilage repair remains a critical challenge in orthopaedic medicine due to the tissue's limited self-healing ability, contributing to degenerative joint conditions such as osteoarthritis (OA). In response, regenerative medicine has developed advanced therapeutic strategies, including cell-based therapies, gene editing, and bioengineered scaffolds, to promote cartilage regeneration and restore joint function. This narrative review aims to explore the latest developments in cartilage repair techniques, focusing on mesenchymal stem cell (MSC) therapy, gene-based interventions, and biomaterial innovations.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
Department of Artificial Intelligence, Hanyang University, Seoul 04763, Republic of Korea.
Electromagnetic devices are a continuous driving force in cutting-edge research and technology, finding applications in diverse fields such as optics [...
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China.
Soft wireless passive sensors have been applied in biological, engineering, and other fields due to their advantages in powerless supply and remote data transmission. External information is obtained by soft wireless passive sensors via the external coils based on electromagnetic induction. The purpose of this review paper is to outline the biological applications of soft wireless passive chipless sensors and provide a classification of wireless passive sensors and an overall explanation of the main work.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!