Evaporation of a sessile droplet: inside the coffee stain.

J Colloid Interface Sci

Complex Fluids and Interface Physics Laboratory, Department of Mechanical and Aerospace Engineering, UCLA, Los Angeles, CA 90095, USA.

Published: March 2012

AI Article Synopsis

  • The study explores the microscopic growth of deposits formed by drying colloid drops on surfaces, specifically analyzing the "coffee stain effect."
  • Observations reveal multiple growth phases, with later stages showing unexpected pattern formations dictated by spatial modulation of the deposit.
  • The research introduces a ballistic model that accurately predicts growth behavior and suggests new avenues for future investigation.

Article Abstract

We have investigated experimentally, for the first time at microscopic level, the growth of the deposit left around a drop of colloids drying on a solid surface ("coffee stain effect"). Direct observations show that there are several distinct phases of growth, the later ones exhibiting surprising pattern formations with spatial modulation of the deposit. In addition, fluorescence reveals that the initial growth phase is governed by a single length scale, increasing with time as t(23). We show that this exponent is a direct consequence of the divergence of evaporation near contact line evidenced by Deegan et al. We propose a simple ballistic model that allows us to calculate both this exponent and the prefactor, in agreement with yet available more complex descriptions. This model also opens the possibility to include effects neglected up to now.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2011.10.053DOI Listing

Publication Analysis

Top Keywords

evaporation sessile
4
sessile droplet
4
droplet inside
4
inside coffee
4
coffee stain
4
stain investigated
4
investigated experimentally
4
experimentally time
4
time microscopic
4
microscopic level
4

Similar Publications

This study focuses on fabricating photonic crystals (PCs) by surfactant-based particle capture at the gas-liquid interface of evaporating sessile droplets. The captured particles form interfacial films, resulting in ordered monolayer depositions manifesting iridescent structural colors. The particle dynamics behind the ordered arrangement is delineated.

View Article and Find Full Text PDF

Self-cleaning applications based on bionic surface designs requires an in-depth understanding of unique and complex wetting and evaporation processes of sessile droplets on natural biosurfaces. To this end, hydrophobic bamboo and Kalanchoe blossfeldiana leaves are excellent candidates for self-cleaning applications, but various properties, such as the heat and mass transfer processes during evaporation, remain unknown. Here, the dynamics of contact angle, radius, and heat and mass transfer during evaporation of sessile droplets on bamboo and Kalanchoe blossfeldiana leaves with roughness in the range 2.

View Article and Find Full Text PDF

The Role of Re-Entrant Microstructures in Modulating Droplet Evaporation Modes.

Micromachines (Basel)

December 2024

Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, 170 Kessels Road, Brisbane, QLD 4111, Australia.

The evaporation dynamics of sessile droplets on re-entrant microstructures are critical for applications in microfluidics, thermal management, and self-cleaning surfaces. Re-entrant structures, such as mushroom-like shapes with overhanging features, trap air beneath droplets to enhance non-wettability. The present study examines the evaporation of a water droplet on silicon carbide (SiC) and silicon dioxide (SiO) re-entrant structures, focusing on the effects of material composition and solid area fraction on volume reduction, contact angle, and evaporation modes.

View Article and Find Full Text PDF

Effect of Photolithographic Biomimetic Surface Microstructure on Wettability and Droplet Evaporation Process.

Biomimetics (Basel)

November 2024

Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK.

In nature, engineering technology and daily life, wetting phenomena are widespread and have essential roles and significance. Bionics is becoming increasingly important nowadays and exploring the mechanism that influences biomimetic surface microstructure on droplet wetting process and heat and mass transfer characteristics is becoming more meaningful. In this paper, based on photolithography technology, SU-8 photoresist was used as raw material to prepare biomimetic surfaces with microstructures in various arrangements.

View Article and Find Full Text PDF

Evaporative Morphology Tuning of Conducting Polymer Films Under Controlled Vacuum Conditions.

Adv Sci (Weinh)

December 2024

Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, 37673, Republic of Korea.

The evaporation of drops on solid surfaces is a ubiquitous natural phenomenon, and their dynamics play a pivotal role in many biological, environmental, and industrial processes. However, the complexity of the underlying mechanisms has largely confined previous studies to liquid drop evaporation under atmospheric conditions. In this study, the first comprehensive investigation of the evaporation dynamics of conducting polymer-containing drops under controlled vacuum environments is presented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!