Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Newly synthesized derivatives of β-cyclodextrin, mono(6-deoxy-6-(1-1,2,3-triazo-4-yl)-1-propane-3-O-(4-methoxyphenyl))β-cyclodextrin (1) and mono(6-deoxy-6thio(1-propane-3-O-(4-methoxyphenyl))) β-cyclodextrin (2) were designed to be receptors of the anticancer drug doxorubicin, which could potentially decrease the adverse effects of the drug during treatment. In both aqueous and aqueous dimethyl sulfoxide (DMSO) solutions, doxorubicin forms an inclusion complex with the new cyclodextrin derivatives with formation constants of K(s) = 2.3 × 10(4) and K(s) = 3.2 × 10(5) M(-1) for cyclodextrins 1 and 2, respectively. The stabilities of the complexes are 2-3 orders of magnitude greater than those with native β-cyclodextrin, and the flexibility of the linker of the side group of the cyclodextrins contributes to this stability. In a hydrogen-bond-accepting solvent, such as pure DMSO, an association that includes hydrogen bonding and chloride ions is favored over the binding of doxorubicin in the cavity of the cyclodextrin derivative. This contrasts with an aqueous medium in which a strong inclusion complex is formed. Cyclic voltammetry, UV-vis, (1)H NMR, and molecular modeling studies of solutions in DMSO and of solutions in water/DMSO demonstrated that the two different modes of intermolecular interaction between doxorubicin and the cyclodextrin derivative depended on the solvent system being utilized.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp2091363 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!