A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Two ZnF-UBP domains in isopeptidase T (USP5). | LitMetric

Human ubiquitin-specific cysteine protease 5 (USP5, also known as ISOT and isopeptidase T), an 835-residue multidomain enzyme, recycles ubiquitin by hydrolyzing isopeptide bonds in a variety of unanchored polyubiquitin substrates. Activation of the enzyme's hydrolytic activity toward ubiquitin-AMC (7-amino-4-methylcoumarin), a fluorogenic substrate, by the addition of free, unanchored monoubiquitin suggested an allosteric mechanism of activation by the ZnF-UBP domain (residues 163-291), which binds the substrate's unanchored diglycine carboxyl tail. By determining the structure of full-length USP5, we discovered the existence of a cryptic ZnF-UBP domain (residues 1-156), which was tightly bound to the catalytic core and was indispensable for catalytic activity. In contrast, the previously characterized ZnF-UBP domain did not contribute directly to the active site; a paucity of interactions suggested flexibility between these two domains consistent with an ability by the enzyme to hydrolyze a variety of different polyubiquitin chain linkages. Deletion of the known ZnF-UBP domain did not significantly affect rate of hydrolysis of ubiquitin-AMC and suggested that it is likely associated mainly with substrate targeting and specificity. Together, our findings show that USP5 uses multiple ZnF-UBP domains for substrate targeting and core catalytic function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391072PMC
http://dx.doi.org/10.1021/bi200854qDOI Listing

Publication Analysis

Top Keywords

znf-ubp domain
16
znf-ubp domains
8
domain residues
8
substrate targeting
8
znf-ubp
6
domains isopeptidase
4
usp5
4
isopeptidase usp5
4
usp5 human
4
human ubiquitin-specific
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!