The compelling evidence for an ocean beneath the ice shell of Europa makes it a high priority for astrobiological investigations. Future missions to the icy surface of this moon will query the plausibly sulfur-rich materials for potential indications of the presence of life carried to the surface by mobile ice or partial melt. However, the potential for generation and preservation of biosignatures under cold, sulfur-rich conditions has not previously been investigated, as there have not been suitable environments on Earth to study. Here, we describe the characterization of a range of biosignatures within potentially analogous sulfur deposits from the surface of an Arctic glacier at Borup Fiord Pass to evaluate whether evidence for microbial activities is produced and preserved within these deposits. Optical and electron microscopy revealed microorganisms and extracellular materials. Elemental sulfur (S⁰), the dominant mineralogy within field samples, is present as rhombic and needle-shaped mineral grains and spherical mineral aggregates, commonly observed in association with extracellular polymeric substances. Orthorhombic α-sulfur represents the stable form of S⁰, whereas the monoclinic (needle-shaped) γ-sulfur form rosickyite is metastable and has previously been associated with sulfide-oxidizing microbial communities. Scanning transmission electron microscopy showed mineral deposition on cellular and extracellular materials in the form of submicron-sized, needle-shaped crystals. X-ray diffraction measurements supply supporting evidence for the presence of a minor component of rosickyite. Infrared spectroscopy revealed parts-per-million level organics in the Borup sulfur deposits and organic functional groups diagnostic of biomolecules such as proteins and fatty acids. Organic components are below the detection limit for Raman spectra, which were dominated by sulfur peaks. These combined investigations indicate that sulfur mineral deposits may contain identifiable biosignatures that can be stabilized and preserved under low-temperature conditions. Borup Fiord Pass represents a useful testing ground for instruments and techniques relevant to future astrobiological exploration at Europa.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ast.2010.0579 | DOI Listing |
J Environ Sci (China)
July 2025
Geology Institute of China Chemical Geology and Mine Bureau, Beijing 100101, China; Technology Innovation Center for Ecological Restoration Engineering in Mining Area, Ministry of Natural Resources, Beijing 100083, China.
Contaminants in the water environment of different pyrite mines have varying characteristics due to different geological origins. Sulfur isotope (δS) is an effective tool to reveal the mechanism of water environment contamination, but no investigations have yet analyzed the characteristics and environmental significance of the δS in the water environment of different pyrite mines. This study involved a field investigation of four typical pyrite mines in China (representing volcanic, skarn, sedimentary-metamorphic, and coal-deposited types) and the analysis of the hydrochemistry of aqueous samples and the δS of both pyrite and dissolved sulfates.
View Article and Find Full Text PDFPLoS One
January 2025
Research Service and Pulmonary Section Medical Service, Veterans Affairs Ann Arbor Health System, Ann Arbor, Michigan, United States of America.
Deployment-related constrictive bronchiolitis (DRCB) has emerged as a health concern in military personnel returning from Southwest Asia. Exposure to smoke from a fire at the Al-Mishraq sulfur enrichment facility and/or burn pits was reported by a subset of Veterans diagnosed with this disorder. DRCB is characterized by thickening and fibrosis of small airways (SA) in the lung, but whether these are related to toxin inhalation remains uncertain.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Tecnológico Nacional de México Campus Tuxtla, Carretera Panamericana Km 1080, Tuxtla Gutiérrez C.P. 29050, Mexico.
This study provides a comprehensive structural, chemical, and optical characterization of CZTS thin films deposited on flexible Kapton substrates via the Successive Ionic Layer Adsorption and Reaction (SILAR) method. The investigation explored the effects of varying deposition cycles (40, 60, 70, and 80) and annealing treatments on the films. An X-ray diffraction (XRD) analysis demonstrated enhanced crystallinity and phase purity, particularly in films deposited with 70 cycles.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
Lithium-sulfur batteries have been recognized as one of the excellent candidates for next-generation energy storage batteries because of their high energy density and low cost and low pollution. However, lithium-sulfur batteries have been challenged by low conductivity, low sulfur utilization, poor cycle life, and the shuttle effect of polysulfides. To address these problems, we report here an independent mixed sulfur host.
View Article and Find Full Text PDFNanoscale Adv
January 2025
Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University Ke Karlovu 5, 12116, Prague 2 Czech Republic
Heterostructuring of two-dimensional materials offers a robust platform to precisely tune optoelectronic properties through interlayer interactions. Here we achieved a strong interlayer coupling in a double-layered heterostructure of sulfur isotope-modified adjacent MoS monolayers two-step chemical vapor deposition growth. The strong interlayer coupling in the MoS(S)/MoS(S) was affirmed by low-frequency shear and breathing modes in the Raman spectra.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!