Background: Solid tumors need new blood vessels to feed and nourish them as well as to allow tumor cells to escape into the circulation and lodge in other organs, which is termed "angiogenesis." Some tumor cells within solid tumors can overexpress integrins α(v)β(3) and α(v)β(5), which can specifically recognize the peptide motif Arg-Gly-Asp (RGD). Thus, the targeting of RGD-modified micelles to tumor vasculature is a promising strategy for tumor-targeting treatment.
Methods: RGD peptide (GSSSGRGDSPA) was coupled to poly(ethylene glycol)-modified stearic acid-grafted chitosan (PEG-CS-SA) micelles via chemical reaction in the presence of N,N'-Disuccinimidyl carbonate. The critical micelle concentration of the polymeric micelles was determined by measuring the fluorescence intensity of pyrene as a fluorescent probe. The micelle size, size distribution, and zeta potential were measured by light scattering and electrophoretic mobility. Doxorubicin (DOX) was chosen as a model anticancer drug to investigate the drug entrapment efficiency, in vitro drug-release profile, and in vitro antitumor activities of drug-loaded RGD-PEG-CS-SA micelles in cells that overexpress integrins (α(ν)β(3) and α(ν)β(5)) and integrin-deficient cells.
Results: Using DOX as a model drug, the drug encapsulation efficiency could reach 90%, and the in vitro drug-release profiles suggested that the micelles could be used as a controlled-release carrier for the hydrophobic drug. Qualitative and quantitative analysis of cellular uptake indicated that RGD-modified micelles could significantly increase the DOX concentration in integrin-overexpressing human hepatocellular carcinoma cell line (BEL-7402), but not in human epithelial carcinoma cell line (Hela). The competitive cellular-uptake test showed that the cellular uptake of RGD-modified micelles in BEL-7402 cells was significantly inhibited in the presence of excess free RGD peptides. In vitro cytotoxicity tests demonstrated DOX-loaded RGD-modified micelles could specifically enhance the cytotoxicity against BEL-7402 compared with DOX-loaded PEG-CS-SA and doxorubicin hydrochlorate.
Conclusion: This study suggests that RGD-modified PEG-CS-SA micelles are promising drug carriers for integrin-overexpressing tumor active targeting therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3265222 | PMC |
http://dx.doi.org/10.2147/IJN.S26670 | DOI Listing |
Eur J Pharm Sci
December 2024
Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8588, Japan. Electronic address:
To achieve the desired delivery effect, extracellular vesicles (EVs) must bypass rapid clearance from circulation and exhibit affinity for target cells; however, it is difficult to simultaneously incorporate two materials into EVs. Post-insertion is a general modification method that can be performed by simply mixing different solutions. Previously, we have developed a microfluidic post-insertion method that supported fast and upscaled modification of EVs using KK-modified high-functionality and -quality (HFQ) lipids.
View Article and Find Full Text PDFACS Nano
May 2024
Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing 100050, China.
Efficient tumor-targeted drug delivery is still a challenging and currently unbreakable bottleneck in chemotherapy for tumors. Nanomedicines based on passive or active targeting strategy have not yet achieved convincing chemotherapeutic benefits in the clinic due to the tumor heterogeneity. Inspired by the efficient inflammatory-cell recruitment to acute clots, we constructed a two-component nanosystem, which is composed of an RGD-modified pyropheophorbide-a (Ppa) micelle (PPRM) that mediates the tumor vascular-targeted photodynamic reaction to activate local coagulation and subsequently transmits the coagulation signals to the circulating clot-targeted CREKA peptide-modified camptothecin (CPT)-loaded nanodiscs (CCNDs) for amplifying tumor targeting.
View Article and Find Full Text PDFNat Commun
October 2023
Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Multicomponent deoxyribozymes (MNAzymes) have great potential in gene therapy, but their ability to recognize disease tissue and further achieve synergistic gene regulation has rarely been studied. Herein, Arginylglycylaspartic acid (RGD)-modified Distearyl acylphosphatidyl ethanolamine (DSPE)-polyethylene glycol (PEG) (DSPE-PEG-RGD) micelle is prepared with a DSPE hydrophobic core to load the photothermal therapy (PTT) dye IR780 and the calcium efflux pump inhibitor curcumin. Then, the MNAzyme is distributed into the hydrophilic PEG layer and sealed with calcium phosphate through biomineralization.
View Article and Find Full Text PDFActa Biomater
March 2023
College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:
Chemotherapeutics have been recommended as the standard protocol for inoperable patients with triple-negative breast cancer (TNBC) at advanced stage, yet limited success has been achieved in prolonging survival rates by this monotherapy. A major reason for this failure is the chemo-resistance from traditional apoptotic pathways resulting in poor therapeutic effect. Ferroptosis has become a powerful modality of no-apoptotic cell death, which can effectively evade chemo-resistance in apoptotic pathways.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2022
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China.
Cancer-associated fibroblasts (CAFs), an important type of stromal cells in the tumor microenvironment (TME), are responsible for creating physical barriers to drug delivery and penetration in tumor tissues. Thus, effectively downregulating CAFs to destroy the physical barrier may allow enhanced penetration and accumulation of therapeutic drugs, thereby improving therapeutic outcomes. Herein, a matrix metalloproteinase (MMP)-triggered dual-targeting hybrid micelle-in-liposome system (RPM@NLQ) was constructed to sequentially deliver quercetin (Que) and paclitaxel (PTX) for fibrotic TME remodeling and chemotherapy potentiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!