A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A biomechanical model for encoding joint dynamics: applications to transfemoral prosthesis control. | LitMetric

A biomechanical model for encoding joint dynamics: applications to transfemoral prosthesis control.

J Appl Physiol (1985)

Institute of Biomedical Engineering and Faculty of Kinesiology, University of New Brunswick, Fredericton, New Brunswick, Canada.

Published: May 2012

This paper presents and tests a framework for encoding joint dynamics into energy states using kinematic and kinetic knee joint sensor data and demonstrates how to use this information to predict the future energy state (torque and velocity requirements) of the joint without a priori knowledge of the activity sequence. The intended application is for enhancing micro-controlled prosthetics by making use of the embedded sensory potential of artificial limbs and classical mechanical principles of a prosthetic joint to report instantaneous energy state and most probable next energy state. When applied to the knee during preferred and fast speed walking in 8 human subjects (66 preferred-speed trials and 50 fast-speed trials), it was found that joint energy states could be consistently sequenced (75% consensus) according to mechanical energy transference conditions and subsequences appeared to reflect the stability and energy dissipation requirements of the knee during gait. When simple constraints were applied to the energy transfer input conditions (their signs), simulations indicated that it was possible to predict the future energy state with an accuracy of >80% when 2% cycle in advance (∼20 ms) of the switch and >60% for 4% (∼40 ms) in advance. This study justifies future research to explore whether this encoding algorithm can be used to identify submodes of other human activity that are relevant to TFP control, such as chair and stair activities and their transitions from walking, as well as unexpected perturbations.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.01251.2011DOI Listing

Publication Analysis

Top Keywords

energy state
16
energy
9
encoding joint
8
joint dynamics
8
energy states
8
predict future
8
future energy
8
joint
6
biomechanical model
4
model encoding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!