The adult dentate gyrus generates new granule cells (GCs) that develop over several weeks and integrate into the preexisting network. Although adult hippocampal neurogenesis has been implicated in learning and memory, the specific role of new GCs remains unclear. We examined whether immature adult-born neurons contribute to information encoding. By combining calcium imaging and electrophysiology in acute slices, we found that weak afferent activity recruits few mature GCs while activating a substantial proportion of the immature neurons. These different activation thresholds are dictated by an enhanced excitation/inhibition balance transiently expressed in immature GCs. Immature GCs exhibit low input specificity that switches with time toward a highly specific responsiveness. Therefore, activity patterns entering the dentate gyrus can undergo differential decoding by a heterogeneous population of GCs originated at different times.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3385415 | PMC |
http://dx.doi.org/10.1126/science.1214956 | DOI Listing |
Psychophysiology
January 2025
Department of Psychology, Hangzhou Normal University, Hangzhou, Zhejiang, China.
The aperiodic exponent of the power spectrum of signals in several neuroimaging modalities has been found to be related to the excitation/inhibition balance of the neural system. Leveraging the rich temporal dynamics of resting-state pupil fluctuations, the present study investigated the association between the aperiodic exponent of pupil fluctuations and the neural excitation/inhibition balance in attentional processing. In separate phases, we recorded participants' pupil size during resting state and assessed their attentional orienting using the Posner cueing tasks with different cue validities (i.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Neuroscience and Padova Neuroscience Center, Università di Padova, Padova, Italy.
Can focal brain lesions, such as those caused by stroke, disrupt critical brain dynamics? What biological mechanisms drive its recovery? In a recent study, we showed that focal lesions generate a sub-critical state that recovers over time in parallel with behavior (Rocha et al., Nat. Commun.
View Article and Find Full Text PDFFront Neurosci
December 2024
Institute of Physiology, RG Neurophysiology and Optogenetics, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany.
Cognitive function in healthy aging and neurodegenerative diseases like Alzheimer's disease (AD) correlates to olfactory performance. Aging and disease progression both show marked olfactory deficits in humans and rodents. As a clear understanding of what causes olfactory deficits is still missing, research on this topic is paramount to diagnostics and early intervention therapy.
View Article and Find Full Text PDFEpilepsia
December 2024
Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China.
Objective: The piriform cortex (PC) plays a critical role in ictogenesis, where an excitation/inhibition imbalance contributes to epilepsy etiology. However, the epileptic dynamics of the gamma-aminobutyric acid (GABA) system and the precise role of GABAergic neurons within the PC in epilepsy remain unclear.
Methods: We combined Ca and GABA sensors to investigate the dynamics of Gad2-expressing neurons and GABA levels, and selectively manipulated GABAergic neurons in the PC through chemogenetic inhibition and caspase3-mediated apoptosis targeting Gad2 interneurons.
ArXiv
November 2024
Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960.
Networks of excitatory and inhibitory (EI) neurons form a canonical circuit in the brain. Seminal theoretical results on dynamics of such networks are based on the assumption that synaptic strengths depend on the type of neurons they connect, but are otherwise statistically independent. Recent synaptic physiology datasets however highlight the prominence of specific connectivity patterns that go well beyond what is expected from independent connections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!