The natural product curcumin is widely used in Asian countries for the treatment of several diseases. However, the clinical potential of curcumins remains limited due to their relatively poor bioavailability and no experimental data about their lipophilicity for bioavailability prediction. To evaluate the retention and lipophilicity of curcumin and its 31 newly synthesized analogues, they were subjected to 3D quantitative structure-retention relationship studies by RP-HPLC. Superior than the classical four-variant quantitative structure-retention relationship model (conventional r(2) =0.734), the 3D comparative molecular similarity index analysis model with combined steric, electrostatic, and H-bond donor fields, resulted in a robust structure-retention correlation (cross-validated q(2) =0.613 and r(2) =0.979). The statistical analyses indicate that the electrostatic and H-bond donor fields have a primary influence on the chromatographic retention of analytes. The predictive power and robustness of the derived comparative molecular similarity index analysis model was further confirmed by the test-set validation (q(2) =0.702, r(2) =0.905, and the slope K=1.016) and Y-randomization examination. Statistically significant and physically meaningful 3D-quantitative structure-retention relationship provided better insight into understanding the retention behaviors of curcumin and its analogues, and their separation mechanism in a given RP-HPLC system.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jssc.201100903DOI Listing

Publication Analysis

Top Keywords

structure-retention relationship
16
quantitative structure-retention
12
curcumin analogues
8
comparative molecular
8
molecular similarity
8
similarity analysis
8
analysis model
8
electrostatic h-bond
8
h-bond donor
8
donor fields
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!