Paracoccidioides brasiliensis GP43-derived peptides are potent modulators of local and systemic inflammatory response.

Microbes Infect

Universidade Federal de São Paulo - UNIFESP, Department of Microbiology, Immunology and Parasitology, Discipline of Immunology, São Paulo, Brazil.

Published: June 2012

AI Article Synopsis

  • Paracoccidioidomycosis is caused by the fungus Paracoccidioides brasiliensis, and its main antigen has peptides that either induce immunity (P10) or inhibit immune responses (P4 and P23).
  • Research focused on how P4 and P23 modulate the immune response, showing they suppress macrophage function and inflammation, aiding infection.
  • In mouse models, the administration of P4 and P23 led to reduced inflammation and influenced the production timing of immune mediators like TNF-α and IL-6, with continuous treatment enhancing these anti-inflammatory effects.

Article Abstract

Paracoccidioidomycosis is a systemic granulomatous disease caused by the dimorphic fungus Paracoccidioides brasiliensis. Its major antigen is a 43 kDa glycoprotein whose peptides embody different functions: P10 peptide, a T-cell epitope, induces protective response while P4 and P23 peptides inhibit both, macrophage functions and inflammatory reaction, thus facilitating infection. Here we investigated the modulating mechanisms of the immune response exerted by P4 and P23 involved in the latter inhibitory effect on macrophages. Moreover we analyzed the peptides effects in different models in vivo. While evaluating whether P4 and P23 present systemic anti-inflammatory effects in vivo, we showed that their intraperitonial administration decreased footpad swelling in mice infected with either P. brasiliensis or Mycobacterium bovis. Both, qPCR and ELISA assays suggested that this anti-inflammatory effect depended on alterations in the kinetics of production of innate immunity modulators such as TNF-α, IL6, IL10 and TLR2. IL10 seems to be early produced than TNF-α and IL6, produced later in presence of peptides. Higher doses or intravenously given P4 and P23 resulted in earlier and more prolonged anti-inflammatory effects. Moreover, continuous treatment with P4 and P23 sustained the anti-inflammatory activity throughout.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micinf.2011.12.012DOI Listing

Publication Analysis

Top Keywords

paracoccidioides brasiliensis
8
anti-inflammatory effects
8
tnf-α il6
8
peptides
5
p23
5
brasiliensis gp43-derived
4
gp43-derived peptides
4
peptides potent
4
potent modulators
4
modulators local
4

Similar Publications

Paracoccidioidomycosis (PCM) is a chronic endemic mycosis in Latin America, predominantly caused by (Pb18) and (Pl01). Diagnosing PCM is challenging due to species-specific antigenic differences, therefore new biomarkers for accurate and rapid detection are needed. This study explores multiple tolerization subtractive immunization (MTSI) to generate monoclonal antibodies against rare or weakly expressed epitopes of Pb18 and Pl01, potentially improving PCM diagnosis.

View Article and Find Full Text PDF
Article Synopsis
  • The herbicide glyphosate effectively inhibits the enzyme EPSPS, highlighting the shikimate pathway as a target for developing new antimicrobial and herbicidal agents.
  • The final enzyme in this pathway, chorismate synthase (CS), was tested with various azo-dyes, leading to the identification of PH011669 as a significant inhibitor with specific dissociation and inhibition values.
  • The study utilized molecular docking and MD simulations to analyze how PH011669 interacts with CS, providing foundational insights for future development of novel enzyme inhibitors.
View Article and Find Full Text PDF

We report a patient with lobomycosis caused by Paracoccidioides loboi fungi in the Andes-Amazon region of Bolivia. We examined clinical, epidemiologic, and phylogenetic data and describe potential transmission/environmental aspects of infection. Continued surveillance and identification of lobomycosis cases in South America are crucial to prevent the spread of this disease.

View Article and Find Full Text PDF

miRNAs regulate the metabolic adaptation of Paracoccidioides brasiliensis during copper deprivation.

Microbes Infect

November 2024

Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil. Electronic address:

Article Synopsis
  • - Copper is vital for cellular functions like detoxifying harmful molecules and energy production, but during infections, the body limits its availability to hinder pathogens.
  • - The study investigates the role of miRNAs (a type of regulatory molecule) in the response of the fungus P. brasiliensis to low copper levels, complementing earlier findings on iron and zinc.
  • - Using RNA sequencing, researchers identified 14 miRNAs that change expression during copper scarcity, with implications for processes like oxidative stress and cell structure adaptation, indicating miRNAs play a key role in the fungus’s metabolic adjustments.
View Article and Find Full Text PDF

Comparison between PCR-RFLP and sequencing techniques in the analysis of Paracoccidioides spp. biodiversity: limitations and insights into species and variant differentiation.

Mycopathologia

November 2024

Laboratório de Investigação Médica em Micologia (LIM53), Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Éneas de Carvalho Aguiar n470, Cerqueira Cézar, São Paulo, SP, 05403000, Brazil.

Background: The study of Paracoccidioides spp. faces significant challenges due to limitations inherent in the molecular biology techniques employed. Recently, new species were described whose geographical and genetic distributions were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!