A method is presented capable of disambiguating the relative influence of statistical covariates upon neural spiking activity. The method, an extension of the generalized linear model (GLM) methodology introduced in Truccolo et al. (2005) to analyze neural spiking data, exploits projection operations motivated by a geometry present in the Fisher information of the GLM maximum likelihood parameter estimator. By exploiting these projections, neural activity can be divided into three categories. These three categories, neural activity due solely to a set of covariates of interest, neural activity due solely to a set of uninteresting, or nuisance, covariates, and neural activity that cannot be unequivocally assigned to either set of covariates, can be associated with physical variables such as time, position, head-direction and velocity. This association allows the analysis of neural activity that can, for example, be due solely to temporal influence, irrespective of other, identified, influences. The method is applied in simulation to a rat exploring a temporally modulated place field. A portion of the analysis reported in MacDonald et al. (2011), using the methodology described herein, is reproduced. This analysis demonstrates the temporal bridging of a delay period in a sequential memory task by firing activity of cells present in the rodent hippocampus that cannot be explained by rodent position, head direction or velocity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976545 | PMC |
http://dx.doi.org/10.1016/j.jneumeth.2011.12.021 | DOI Listing |
Physiol Rev
January 2025
Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland.
Physical activity is a meaningful part of life, which starts before birth and lasts until death. There are many health benefits to be derived from physical activity, hence, regular engagement is recommended on a weekly basis. However, these recommendations are often not met.
View Article and Find Full Text PDFPLoS One
January 2025
Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
Altered neural signaling in fibromyalgia syndrome (FM) was investigated with functional magnetic resonance imaging (fMRI). We employed a novel fMRI network analysis method, Structural and Physiological Modeling (SAPM), which provides more detailed information than previous methods. The study involved brain fMRI data from participants with FM (N = 22) and a control group (HC, N = 18), acquired during a noxious stimulation paradigm.
View Article and Find Full Text PDFElife
January 2025
National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
Co-active or temporally ordered neural ensembles are a signature of salient sensory, motor, and cognitive events. Local convergence of such patterned activity as synaptic clusters on dendrites could help single neurons harness the potential of dendritic nonlinearities to decode neural activity patterns. We combined theory and simulations to assess the likelihood of whether projections from neural ensembles could converge onto synaptic clusters even in networks with random connectivity.
View Article and Find Full Text PDFHum Brain Mapp
February 2025
Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA.
Converging lines of research indicate that inhibitory control is likely to be compromised in contexts that place competing demands on emotional, motivational, and cognitive systems, potentially leading to damaging impulsive behavior. The objective of this study was to identify the neural impact of three challenging contexts that typically compromise self-regulation and weaken impulse control. Participants included 66 healthy adults (M/SD = 29.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, Plock, Poland.
Chronic migraine (CM) is the ultimate and most burdensome form of the transformation from episodic migraine (EM), called chronification. The mechanism behind migraine chronification is poorly known and difficult to explore as CM has the same spectrum of pathogenesis as EM and the EM-CM transition is bidirectional. Central sensitization (CS) is a key phenomenon in migraine: its mechanisms include disturbed neural plasticity, which is the ability of the nervous system to adapt to endo- and exogenous changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!