Effect of amphetamine place conditioning on excitatory synaptic events in the basolateral amygdala ex vivo.

Neuroscience

Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University, 3333 Green Bay Road, North Chicago, IL 60064, USA.

Published: March 2012

The basolateral amygdala (BLA) plays an important role in the formation of associations between context and drug. BLA activity and BLA-dependent drug-seeking behavior are driven by excitatory inputs. Drug-seeking behavior driven by context involves participation of the BLA, and plasticity of excitatory inputs to the BLA may contribute to this behavior. In this study, amphetamine conditioned place preference (AMPH CPP) was used to model the formation of context-drug associations. Learning-induced changes of excitatory synapses within the BLA were examined. Male Sprague-Dawley rats were assigned to one of three groups, the experimental group (AMPH CPP) or one of two control groups (saline or AMPH delayed pairing). Approximately 24 h after testing their preference, spontaneous and miniature excitatory postsynaptic currents (sEPSCs and mEPSCs, respectively) in BLA pyramidal neurons were investigated using whole-cell patch-clamp recordings. There were no between-groups differences in the amplitude or frequency of sEPSCs or mEPSCs. In a higher osmolarity solution to increase release, there was a significantly greater frequency of the mEPSCs in neurons from AMPH CPP animals compared with controls. This was observed with no change detected in the probability of glutamate release. Together, these data demonstrate no evidence for increased synaptic strength, but are consistent with an increase in the number of synapses in the BLA after AMPH CPP. These findings may underlie increased excitatory drive of the BLA after AMPH CPP, and contribute to the animals' preference for the AMPH-paired compartment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3293993PMC
http://dx.doi.org/10.1016/j.neuroscience.2012.01.015DOI Listing

Publication Analysis

Top Keywords

amph cpp
20
basolateral amygdala
8
bla
8
drug-seeking behavior
8
behavior driven
8
excitatory inputs
8
synapses bla
8
sepscs mepscs
8
bla amph
8
excitatory
6

Similar Publications

Chemistry to cognition: Therapeutic potential of (m-CF-PhSe) targeting rats' striatum dopamine proteins in amphetamine dependence.

Prog Neuropsychopharmacol Biol Psychiatry

December 2024

Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas (LaftamBio Pampa), Universidade Federal do Pampa, Itaqui, RS, Brazil. Electronic address:

Amphetamine (AMPH) abuse represents a major global public health issue, highlighting the urgent need for effective therapeutic interventions to manage addiction caused by this psychostimulant. This study aimed to assess the potential of m-trifluoromethyl-diphenyldiselenide [(m-CF-PhSe)] in preventing the addictive effects induced by AMPH through targeting dopamine metabolism proteins. (m-CF-PhSe) is of interest due to its demonstrated efficacy in mitigating opioid abuse, establishing it as a promising candidate for addiction treatment research.

View Article and Find Full Text PDF

Effect of lateral septum vasopressin administration on reward system neurochemistry and amphetamine-induced addictive-like behaviors in female rats.

Front Pharmacol

July 2024

Universidad de Santiago de Chile (USACH), Facultad de Ciencias Médicas, Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Santiago, Chile.

The chronic use of psychostimulants increases the risk of addiction and, there is no specific pharmacologic treatment for psychostimulant addiction. The vasopressin (AVP) system is a possible pharmacological target in drug addiction. Previous results obtained in our laboratory showed that amphetamine (AMPH) treatment decreases lateral septum (LS) AVP levels in male rats, and AVP microinjection in LS decreases addictive-like behavior.

View Article and Find Full Text PDF

Patterns of drug ingestion may have a dissimilar impact on the brain, and therefore also the development of drug addiction. One pattern is binge intoxication that refers to the ingestion of a high amount of drug on a single occasion followed by an abstinence period of variable duration. In this study, our goal was to contrast the effect of continuous low amounts with intermittent higher amounts of Arachidonyl-chloro-ethylamide (ACEA), a CB1R agonist, on amphetamine seeking and ingestion, and describe the effects on the expression of CB1R and CRFR1 in the central nucleus of the amygdala (CeA) and in the nucleus accumbens shell (NAcS).

View Article and Find Full Text PDF

Behavioural effects of APH199, a selective dopamine D4 receptor agonist, in animal models.

Psychopharmacology (Berl)

April 2023

Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany.

Rationale: The dopamine D4 receptors (DRD4) play a key role in numerous brain functions and are involved in the pathogenesis of various psychiatric disorders. DRD4 ligands have been shown to moderate anxiety, reward and depression-like behaviours, and cognitive impairments. Despite a series of promising but ambiguous findings, the therapeutic advantages of DRD4 stimulation remain elusive.

View Article and Find Full Text PDF

GPR55 activation prevents amphetamine-induced conditioned place preference and decrease the amphetamine-stimulated inflammatory response in the ventral hippocampus in male rats.

Prog Neuropsychopharmacol Biol Psychiatry

January 2023

Laboratorio de Canabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico.

Inflammatory response in the Central Nervous System (CNS) induced by psychostimulants seems to be a crucial factor in the development and maintenance of drug addiction. The ventral hippocampus (vHp) is part of the reward system involved in substance addiction and expresses abundant G protein-coupled receptor 55 (GPR55). This receptor modulates the inflammatory response in vitro and in vivo, but there is no information regarding its anti-inflammatory effects and its impact on psychostimulant consumption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!