Objectives: To study redox responses of cultured osteoblasts, mediated by bacterial lipopolysaccharide (LPS), glucose (G), glucose-oxidised low density lipoprotein (GLDL) and minocycline (M) using radiolabelled steroid markers of redox status and wound healing. The clinical relevance of this concept in periodontitis patients with cardiometabolic risk markers is addressed.

Methods: A well differentiated osteoblastic cell-line was cultured in Eagle's MEM in confluent monolayer, in 24 well multiwell plates. Radiolabelled testosterone was used as the steroid substrate. Experiments were set up with controls in the absence of agents, optimal concentrations (previously determined) of G, GLDL, LPS, M, GLDL+LPS and the latter combined with M (n = 8). At the end of a 24h incubation period, the reaction was terminated and the medium analysed for yields of the steroid metabolite 5α-dihydrotestosterone (DHT), the redox marker relevant to wound healing, the weaker androgen 4-androstenedione (4-A) and the diols. Analysis entailed thin layer chromatography and radioisotope scanning.

Results: The yields of DHT showed 1.4-fold and 2.3-fold decreases in response to GLDL and LPS respectively and a 1.3-fold reduction in response to the combination, when compared with controls in the absence of agents. Minocycline stimulated the yield of DHT by 1.4-fold, and when combined with GLDL+LPS, the decreased yield was overcome and raised to 2-fold above the combination in response to the addition of minocycline (n = 8; p < 0.001), when compared with controls. The trends in the yields of 4-A and diols were inversely related to each other with increases and decreases over controls respectively, in keeping with enzymic pathways.

Conclusions: Decreased yields of the oxidative stress marker DHT in response to LPS, G and GLDL were overcome in the presence of minocycline, which demonstrates its potential role as an adjunctive therapeutic agent in an environment of oxidative stress. These applications could be extrapolated to periodontal disease and co-existing cardiometabolic risk markers, in the context of its antiinflammatory and antioxidant actions relevant to healing. In this paper, recent patents relevant to adjunctive therapeutic management of periodontal disease co-existing with cardiometabolic risk markers are addressed. There have been significant advances in therapeutic interventions for overcoming oxidative stress-inducing mechanisms that are common to these disease entities.

Download full-text PDF

Source
http://dx.doi.org/10.2174/187221412799015281DOI Listing

Publication Analysis

Top Keywords

cardiometabolic risk
12
risk markers
12
wound healing
8
controls absence
8
absence agents
8
gldl lps
8
4-a diols
8
dht 14-fold
8
compared controls
8
oxidative stress
8

Similar Publications

The aim of this study is to investigate the effect of cardiometabolic diseases (CMDs) on the development of depressive symptoms and to determine whether socioeconomic status (SES) moderates this effect. A total of 6,455 individual free from depressive symptoms were selected from the China Health and Retirement Longitudinal Study (CHARLS). CMDs and SES were self-reported.

View Article and Find Full Text PDF

Metabolic Dysfunction-Associated Steatotic Liver Disease and the Cardiovascular System.

Trends Cardiovasc Med

January 2025

Department of Cardiology, Euroclinic Hospital, Athens, Greece; First Department of Cardiology, Athens University School of Medicine, Athens, Greece. Electronic address:

Metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed nonalcoholic fatty-liver disease, is an important and rising health issue with a link with atherosclerotic cardiovascular (CV) disease (CVD), affecting ∼25-30% of the adults in the general population; in patients with diabetes, its prevalence culminates to ∼70%; its evolutive form, nonalcoholic steatohepatitis, is estimated to be the main cause of liver transplantation in the future. MASLD is a multisystem disease that affects, besides the liver, extra-hepatic organs and regulatory pathways; it raises the risk of type 2 diabetes mellitus (T2D), CVD, and chronic kidney disease; the disease may also progress to hepatocellular carcinoma. Its diagnosis requires hepatic steatosis and at least one cardiometabolic risk factor and the exclusion of both significant alcohol consumption and other competing causes of chronic liver disease.

View Article and Find Full Text PDF

A new Mediterranean Lifestyle Pyramid for children and youth: a critical lifestyle tool for preventing obesity and associated cardiometabolic diseases in a sustainable context.

Adv Nutr

January 2025

Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Internal Medicine, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona (UB), Barcelona, Spain; Institut de Recerca en Nutrició i Seguretat Alimentaria (INSA-UB). University of Barcelona, Barcelona, Spain; Fundación Dieta Mediterránea, Barcelona, Spain. Electronic address:

Cardiovascular risk factors begin in childhood and track into adulthood, increasing the possibility of impaired cardiometabolic health. Adopting healthy dietary patterns can help curb childhood obesity, a worrisome epidemic problem at present. In the era of personalized nutrition, dietary recommendations should be adapted to different stages of life, including children (older than 3 years) and adolescents.

View Article and Find Full Text PDF

In Table 5.4, "Elements for risk calculation and suggested risk score for people with diabetes who seek to fast during Ramadan," of the article cited above, the risk score for type 2 diabetes was mistakenly given as 2; the correct risk score is 0. The online version of the article (https://doi.

View Article and Find Full Text PDF

Decoding the Therapeutic Target SVEP1: Harnessing Molecular Trait GWASs to Unravel Mechanisms of Human Disease.

Annu Rev Pharmacol Toxicol

January 2025

Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA; email:

Although human genetics has substantial potential to illuminate novel disease pathways and facilitate drug development, identifying causal variants and deciphering their mechanisms remain challenging. We believe these challenges can be addressed, in part, by creatively repurposing the results of molecular trait genome-wide association studies (GWASs). In this review, we introduce techniques related to molecular GWASs and unconventionally apply them to understanding , a human coronary artery disease risk locus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!