Mucopolysaccharidosis type I (MPS IH; Hurler syndrome) is a rare genetic disorder that is caused by mutations in the α-L-iduronidase (IDUA) gene, resulting in the deficiency of IDUA enzyme activity and intra-cellular accumulation of glycosaminoglycans. A characteristic skeletal phenotype is one of the many clinical manifestations in Hurler disease. Since the mechanism(s) underlying these skeletal defects are not completely understood, and bone and cartilage are mesenchymal lineages, we focused on the characterization of mesenchymal cells isolated from the bone marrow (BM) of 5 Hurler patients. IDUA-mutated BM stromal cells (BMSC) derived from MPS IH patients exhibited decreased IDUA activity, consistent with the disease genotype. The expansion rate, phenotype, telomerase activity, and differentiation capacity toward adipocytes, osteoblasts, chondrocytes, and smooth muscle cells in vitro of the MPS I BMSC lines were similar to those of BMSC from age-matched normal control donors. MPS I BMSC also had a similar in vivo osteogenic capacity as normal BMSC. However, MPS I BMSC displayed an increased capacity to support osteoclastogenesis, which may correlate with the up-regulation of the RANKL/RANK/OPG molecular pathway in MPS I BMSC compared with normal BMSC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/scd.2011.0555 | DOI Listing |
Stem Cells
October 2024
College of Veterinary Medicine, Nanjing Agricultural University.
Methylprednisolone (MPS) use is linked to increased cases of osteonecrosis of the femoral head (ONFH). Bone marrow mesenchymal stem cells (BMSCs) have shown potential for treating MPS-induced ONFH, but their effectiveness is limited by high apoptosis rates post-transplantation. We developed a pre-treatment strategy for BMSCs to improve their viability.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2023
Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, Austria.
Regeneration of bone defects is often limited due to compromised bone tissue physiology. Previous studies suggest that engineered extracellular matrices enhance the regenerative capacity of mesenchymal stromal cells. In this study, we used human-induced pluripotent stem cells, a scalable source of young mesenchymal progenitors (hiPSC-MPs), to generate extracellular matrix (iECM) and test its effects on the osteogenic capacity of human bone-marrow mesenchymal stromal cells (BMSCs).
View Article and Find Full Text PDFSmall
October 2023
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China.
Osteonecrosis of the femoral head (ONFH) is recognized as a common refractory orthopedic disease that causes severe pain and poor quality of life in patients. Puerarin (Pue), a natural isoflavone glycoside, can promote osteogenesis and inhibit apoptosis of bone mesenchymal stem cells (BMSCs), demonstrating its great potential in the treatment of osteonecrosis. However, its low aqueous solubility, fast degradation in vivo, and inadequate bioavailability, limit its clinical application and therapeutic efficacy.
View Article and Find Full Text PDFOpen Life Sci
October 2021
Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, No. 278 Baoguang Avenue, Xindu District, Chengdu 610500, Sichuan, People's Republic of China.
Osteonecrosis of the femoral head (ONFH) induced by glucocorticoids (GCs) has been considered to be associated with the dysfunction of bone marrow mesenchymal stem cells (BMSCs). Studies have reported that GCs can regulate the normal differentiation of BMSCs. However, the exact mechanism of this regulation remains unclear.
View Article and Find Full Text PDFStem Cell Res Ther
March 2021
Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
Background: Cellular therapy based on mesenchymal stem cells (MSCs) is a promising novel therapeutic strategy for the osteonecrosis of the femoral head (ONFH), which is gradually becoming popular, particularly for early-stage ONFH. Nonetheless, the MSC-based therapy is challenging due to certain limitations, such as limited self-renewal capability of cells, availability of donor MSCs, and the costs involved in donor screening. As an alternative approach, MSCs derived from induced pluripotent stem cells (iPSCs), which may lead to further standardized-cell preparations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!